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ABSTRACT

Motivation: Mass spectrometry (MS) can generate high-throughput
protein profiles for biomedical research to discover biologically
related protein patterns/biomarkers. The noisy functional MS data
collected by current technologies, however, require consistent,
sensitive and robust data-processing techniques for successful
biomedical application. Therefore, it is important to detect features
precisely for each spectrum, quantify them well and assign a unique
label to features from the same protein/peptide across spectra.
Results: In this article, we propose a new comprehensive MS data
preprocessing package, Wave-spec, which includes several novel
algorithms. It can overcome several conventional difficulties. Wave-
spec can be applied to multiple types of MS data generated with
different MS technologies. Results from this new package were
evaluated and compared to several existing approaches based on
a MALDI-TOF MS dataset.
Availability: An example of MATLAB scripts used to implement the
methods described in this article, along with Supplementary Figures,
can be found at http://www.vicc.org/biostatistics/supp.php.
Contact: yu.shyr@vanderbilt.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
With recent developments in proteomics, especially in mass
spectrometry (MS) techniques such as MALDI-TOF MS and
LC-MS/MS, protein profiles of tissue, serum and urine samples
have become promising for detection of biologically related protein
patterns (Adam et al., 2002; M’Koma et al., 2007; Yanagisawa
et al., 2003; Yildiz et al., 2007).

The complexity and high dimensionality of MS data make
quantitative analysis quite challenging. In practice, a biomedical
experiment can generate hundreds or thousands of spectra. Each
individual spectrum can be expressed as a graph of an intensity
value with continuous wave shapes in a certain m/z range (tens of
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thousands of sampling pairwise data points) (Chen et al., 2007).
The raw spectra contain not only peaks that represent proteins or
biomarkers of scientific interest, but also substantial background
noise. (Note: throughout this article, we use the term ‘raw data’
to refer to the MS data we obtained from the instrumentation and
software used, prior to any manipulation on our part. Due to the
software used, these data are in the m/z domain. Some MS software
programs supply raw time-of-flight data.) MS spectra frequently
exhibit random shifts on the m/z scale, and the correction for
such variation is not easy, as we normally do not have explicit
protein/peptide ID information for most peaks in the spectrum.
Sample preparation conditions and laser intensity add other sources
of intensity measurement variation. In addition, spectra may be
acquired at different times with multiple replications per sample.
As a consequence of this complexity, we divide analysis efforts
into three major steps: the preprocessing step (feature extraction
and quantification); the spectrum quality assessment step (to address
reproducibility); and finally, the statistical analysis/data mining step
(to select biomarkers/features of interest).

Although each part of the analysis is important, preprocessing
is a crucial step and has great impact on evaluation of MS
proteomics data reproducibility as well as on accuracy of biomarker
identification. All current MALDI-TOF MS preprocessing methods
share the same goal: to extract and quantify peaks of
interest accurately and make the result applicable for further
statistical analysis. In general, a widely accepted MS data
preprocessing strategy follows these steps: spectrum calibration,
denoising, baseline correction, normalization, peak detection, peak
quantification and peak alignment (Morris et al., 2005; Wagner
et al., 2003; Yasui et al., 2003). Despite its importance, challenges
remain in preprocessing. Indeed, subjective parameter selection is
required in almost all existing preprocessing methods, and makes
reproducibility a particular issue. To improve the effectiveness and
reproducibility of the preprocessing procedure, we developed a new
set of algorithms based on feedback concepts, which enabled us to
objectively target optimal parameter settings. The algorithms are
incorporated in a package called Wave-spec. We summarize the
methods and the Wave-spec package as follows:

1. Wave-spec introduces feedback, a widely used concept in
engineering, into the preprocessing procedure. The parameter
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Fig. 1. Wave-spec package process chart.

settings are optimized through an objective iteration
procedure; therefore, preprocessing reproducibility is greatly
improved.

2. Wave-spec includes novel algorithms for finding common
peaks across spectra and objective wavelet denoising
parameter selection. The data-driven feedback procedures
benefit from incorporating non-parametric kernel density
estimation (KDE) for peak distribution across all spectra.

3. Wave-spec contains a unique feature that effectively and
efficiently detects and quantifies isotopic peaks and aligns
isotopic peak clusters across all spectra. Such data are typical
of MALDI-TOF MS data acquired from a reflectron mass
analyzer (Yu et al., 2006).

4. Wave-spec offers a new peak quantification method, which
utilizes peak area information rather than the maximum point
alone. This is a more robust measurement with less variation.

2 ALGORITHMS AND METHODS
Data Explore Software, the software component of the Voyager-
Elite MALDI MS instrument (Applied Biosystems, Foster City,
CA, USA), was used to obtain raw MS data. Each raw spectrum
obtained using this software is composed of tens of thousands of
pairwise data points (m/z versus intensity). Raw data were exported
in American Standard Code for Information Interchange (ASCII)
format [for a more detailed description of the data acquisition
process, see Yildiz et al. (2007)]. Instrumentation and sample
background noises are inevitably included in raw spectra, which
need to be preprocessed before feature selection. The Wave-spec
package consists of three major steps for preprocessing. First, it
calibrates and unifies the m/z scales across all spectra. Second, it
detects peaks and assigns unique IDs to the detected peaks. Finally,
it quantifies peaks and provides intensities with corresponding m/z
values for further analysis. The process chart for Wave-spec is
illustrated in Figure 1.

2.1 Calibration
Raw spectra from MS instruments typically exhibit random shifts
from their theoretical/ideal m/z positions. Such variation of peak
position from spectrum to spectrum not only makes common peak

finding difficult, but also makes intensity measurement inaccurate.
To correct this, we carry out the first step of preprocessing: the
calibration step.

The proposed calibration strategy is based on two desiderata:
(i) the ideal peak should be bell shaped and (ii) the spectra should
have only linear offset on the time domain. Therefore, the ideal peak
shape can be approximated with a Gaussian density curve, g(µ,σ 2)
(µ: the theoretical protein location; σ 2: estimated by the width of
the known peak shape in the real data), and the spectra also can be
transformed from the m/z domain to the time domain, calibrated
linearly, then changed back to the m/z domain. Following are the
details of the calibration process:

1. Select calibration peaks from the original spectra.
The qualified candidate calibration peaks require two
characteristics: (i) the ideal situation is that they show clear
bell shapes (in practice, as long as there is a mode around
the range of a known protein, the algorithm proposed will
match that peak point to the known protein location) and
(ii) their observed m/z values should be near known proteins
(for which exact m/z values are known). For instance, the
hemoglobin α, β with single and double charges will offer
us four well-shaped calibration reference peaks in many
mammalian spectra.

2. Convert the spectra from the m/z domain to the time domain t.
The peak shapes in the original and ideal spectra can now be
represented as f (t) and g(t), respectively. (Note: this step is
unnecessary if time-of-flight data are directly available from
the instrumentation/software used.)

3. With the spectra converted to the time domain, perform
the calibration as follows. Convolve the raw spectrum peak
intensities f (t) with the ideal shape g(t) over a finite range
[t1,t2]

h(t)=g∗f =
t2∫

t1

g(τ )f (t−τ )dτ

The maximum value h(tmax) of the convolution is obtained
when f and g overlap the most. That is, if the peak in the
original spectrum linearly shifts to position tmax from its
toriginal position, we then make the spectrum profile as close
as possible to its ideal/theoretical position. When selecting
multiple known proteins, tmax is obtained by maximizing the
sum of the convolution values of h(t) on these multiple peak
locations. We now have tshift = toriginal −tmax . The amount of
recommended shift is |tshift | in the following direction:

|tshift |→



shift to right, toriginal < tmax
shift to left, toriginal > tmax
keep the same, toriginal = tmax

4. Convert the spectra from the time domain to the m/z domain.

This calibration strategy does not aim to align a single local
maximum, but instead focuses on the entire peak shape. This has
two advantages: (i) robustness (calibrating peaks using whole peak
shape rather than peak maxima is robust to variation in maximum
intensity among individual peaks) and (ii) effectiveness (using
multiple known proteins’ m/z positions calibrates over a wider
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range, and the resulting accuracy will be greater across the m/z
range).

2.2 Feature selection
As we know, the true features of each spectrum are blurred by
random variation not only in their location, but also in their
expression level. The major goal of the peak detection step is to
identify the true features, with their m/z positions, among all the
superficial peaks. To achieve this goal, we designed a feedback-
based procedure. First, we detect the peaks of each spectrum by
applying a time-invariant wavelet denoising technique for spectrum
smoothing, and choose the local maximum as a peak location.
Second, we define the common peaks across the entire collection of
spectra using non-parametric KDE for peak distribution. The height
of the baseline of peak distribution provides an index reflecting
the denoising effects of the current wavelet denoising parameter
settings; we update the denoising parameters to recalculate this
index, then iterate this procedure until the index is stabilized and
minimized to reach a certain noise tolerance upper limit. The
optimal denoising parameter settings are those providing this final
index. With a set of optimal parameters, the reproducibility of
preprocessing may be improved. Following is a detailed description
of this procedure.

2.2.1 Peak detection on a single spectrum Previous work has
proven that time-invariant stationary discrete wavelet transform
or undecimated discrete wavelet transform wavelets with a hard
threshold can provide sound performance for denoising (Coombes
et al., 2005).

Three parameters need to be set: a basis for the wavelet type,
a decomposition level and wavelet coefficient thresholds. The
choice of wavelet basis will not significantly affect denoising
(Coombes et al., 2005). On the wavelet domain, we can set the
decomposition level empirically based on time–frequency energy
distribution, which balances smoothness and signal loss (Chen
et al., 2007). The most important denoising parameters are wavelet
coefficient thresholds, and they are the focus of our procedure;
we initially set the parameters for smoothing, then update them
to the optimum using a feedback index. After denoising, the local
maxima (peaks) become valid surrogates for the true features of the
spectrum. Furthermore, the denoising procedure reduces the false
peak discovery rate as the small bumps are mostly removed.

2.2.2 Common peak finding After single spectrum peak
detection, we get a peak (local maximum) list for each spectrum.
However, such a list of peaks still cannot be claimed as the true set of
feature locations, as the number of peaks might differ across different
spectra. Further, a true feature may be represented by different m/z
locations on different spectra. The purpose of common peak finding
is to infer the true feature locations from the peak list of all spectra
in the whole dataset. Therefore, a procedure is required to identify
which peaks come from the same ions; in other words, we need to
define certain boundaries to mark peaks within a boundary as the
same feature across the whole dataset.

Several algorithms have been developed to solve this problem.
Coombes et al. (2005) defined peaks within a fixed m/z or time
range as one bin. The windowing approach is then repeated across
the spectrum. Morris et al. (2005) computed a mean spectrum, and
used each local maximum’s two adjacent minima as the boundaries.

Tibshirani et al. (2004) applied a clustering idea to assign the peaks
with similar m/z as one bin according to their similarity in the
dendrogram.

In this section, we propose a new method that utilizes the
distribution of peak locations. That is, we apply a non-parametric
KDE method to model peak location distribution. ‘Bumps’ in the
peak distribution indicate the location and extent of features in the
spectra. Intuitively, the higher the bump (because of a greater number
of peaks at that m/z), the more likely it is to correspond to a peak
common across spectra.

The details of the implementation are as follows. Let X1,X2,...,Xn
denote a sample of the total number of n peak m/z values (locations)
drawn from probability density function f . The kernel density
estimate of f at the point xi is given by:

f̂h(x)= 1

nh

n∑
i=1

K(
x−Xi

h
)

where the kernel K satisfies
∫

K(x)dx=1 (Sheather, 2004). This is
a convolution of the sample empirical distribution F̂ and the kernel
function Kh, (F̂ �Kh)(x). The reason we choose a Gaussian kernel
is that, with infinite support, it performs more robustly to peak m/z
variation than do kernels with finite support such as Epanechikov
or tri-cube kernels. For a Gaussian kernel, the bandwidth equals the
standard deviation.

Again, our primary interest is to detect the location and boundaries
of the true features, with their m/z locations, using the KDE method.
We define the local maxima of the KDE as a common feature’s m/z
location, and the two adjacent local minima as its boundaries. In
this way, we identify the true peak locations and distinguish one
from another efficiently and effectively. We could also assume the
distribution pattern as a multiple normal mixture model and apply
an EM algorithm to estimate µi, σi of each mode. However, we seek
only the cutoff points between two adjacent bell shapes, which can be
easily accessed with a non-parametric estimate, while estimating µi,
σi through EM could be computationally expensive and error-laden.

2.2.3 Optimizing wavelet denoising parameters through feedback
The estimation procedure of peak location distribution provides an
‘index’ that can be used to evaluate the performance of the denoising.
If the denoising procedure is not stringent enough, more noisy peaks
will be admitted to the peak list; those falsely discovered peaks
are not true features, but instead randomly distributed on the m/z
axis. As a result, the estimated peak location distribution curve will
show an elevated baseline with a height reflecting the proportion
of falsely detected peaks associated with wavelet threshold levels.
Therefore, we can utilize the peak location distribution baseline
information to adjust the wavelet threshold level. Supplementary
Figure 1 shows how we define such a feedback index. The index is
defined as B/(A+B), the ratio of baseline area to total area under
the distribution curve. In terms of getting rid of false peaks, we
hope to see the feedback index as low as possible, as baseline
decreases when the threshold level is high. On the other hand,
we cannot require the feedback index to be too small, as the true
features might also be removed with an overly stringent threshold.
To balance the tradeoff between admitting false peaks and removing
true peaks, we apply the following schema: first, we pre-specify
the feedback index upper limit (e.g. 0.05). Then, we increase the
wavelet threshold from relatively low levels until the feedback
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index is low enough to pass the upper limit. The idea of having
a feedback index upper limit is similar to the idea of setting a
significance level for a statistical test, to judge the performance
of the test. Although the choice of such a value is still arbitrary,
it is more robust than the choices of other wavelet denoising
parameters.

Through all these iterative processes, we determine the optimal
wavelet threshold levels to determine true feature locations and their
boundaries more accurately. This framework also can be applied to
other feature-interested analyses of functional biomedical data.

2.3 Feature quantification
Feature quantification includes three steps: baseline correction,
normalization and peak measurement. For baseline correction, we
detect local minima using sliding windows on the denoised spectrum
and then fit these local minima to a smooth curve with a spline
(Chen et al., 2007). We apply the total ion current (TIC) method to
normalize all spectra, which enforces the constraint of equal TIC for
each spectrum in the dataset (Morris et al., 2005). Peak measurement
is the last step to quantify the common features for each spectrum.
Most current methods use the height of the local maximum to
quantify the feature within estimated boundaries. However, point
measurement may be subject to high variation from various sources.
Also, height may not be a good index of the total amount of ions for a
specific feature. Measuring a small region or bounded neighborhood
around each peak would be more robust and informative; using
small region measurement results in smaller coefficients of variation
(Section 3.2).

3 APPLICATION AND EVALUATION
As described in the following three subsections, we applied the
Wave-spec package to a publicly available MALDI-TOF MS dataset
(Taguchi et al., 2007). In addition to demonstrating the capabilities
of the Wave-spec package, analysis of these data also allowed
us to compare the package with two other existing preprocessing
packages. To complete our usage of Wave-spec, in the final
subsection we show how Wave-spec can be applied to MS data with
isotopic information, for instance, MALDI-TOF MS on reflectron
mode or TOF-TOF MS data.

3.1 Preprocessing on MALDI-TOF MS data
In the serum MALDI-TOF dataset mentioned above, 71 spectra
were obtained using a Voyager DE-STR MALDI-TOF mass
spectrometer (Applied Biosystems, Foster City, CA, USA). Positive
ion mass spectra were acquired in linear mode. A total of 500–525
independent spectra for each sample were averaged to generate each
spectrum. We applied Wave-spec, and the results are summarized
below. The results show that the spectra are calibrated to the
correct m/z scales. Figure 2 shows, for example, spectra before
and after calibration for the range 8740–8860 Da. Figure 2A shows
all spectra in this range, suggesting two possible peaks, though
they are not aligned well. Figure 2B shows two clear peak shapes,
aligned well after calibration. Similar results are found in other
regions. For individual peak detection and common peak finding,
we applied the wavelet denoising strategy by initially setting the
threshold parameter to 20-fold of the MAD/0.67 on each spectrum
in this dataset (Coombes et al., 2005). Then, based on the peak

A

B

Fig. 2. Calibration effects: before (A) and after (B).

Fig. 3. Wavelet threshold selection by feedback.

list, we generated the peak density curve by KDE and estimated
the baseline proportion of peaks. We repeated this procedure,
gradually increasing wavelet denoising parameters from 20 to 100 by
increments of five. The more peaks admitted, the more false positive
peaks are included; consequently, the m/z location of the peaks
shows a higher variation, which increases the baseline proportion
of the peak distribution curve.

By setting an upper limit, the cutoff point of 0.05, we selected the
optimum threshold parameter with respect to the number of peaks.
Within the limits, we normally choose the lowest wavelet threshold
level, as it will allow more common features to be detected.Applying
this criterion to Figure 3, we chose a wavelet threshold of 60. In
the meantime, spectrum baseline correction and normalization were
carried out, and Supplementary Figure 2 shows the average curve of
the baseline-corrected and normalized spectra with common peak
boundaries for the region from 11 000 Da to 17 000 Da. Within
the boundaries, we quantify the peak with the area under the curve
(AUC). The output of the set of preprocessing steps are common
peak IDs, boundaries and expression levels for each spectrum.
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Fig. 4. Method comparison: common peak boundary width.

3.2 Evaluation of Wave-spec compared to existing
preprocessing methods

To evaluate Wave-spec, we compared the feature extraction and
quantification performance of Wave-spec to that of existing
algorithms, using the above 71 human serum MALDI-TOF MS
samples. In our experience, feature/peak detection across all spectra
is one of the most challenging parts of MS data preprocessing. The
general procedure for feature detection includes individual spectrum
peak detection, finding common peaks across spectra, and assigning
common peaks to an individual spectrum; these processes were
the focus of our evaluation of Wave-spec versus the two existing
packages.

The individual spectrum peak detection procedure relies primarily
on the denoising technique. The wavelet method, as a powerful
signal processing tool, performs well for mass spectrum denoising
(Chen et al., 2007; Coombes et al., 2005). The number of
features/peaks detected is basically determined by the wavelet
denoising threshold level. Based on an average spectrum selected
from the 71 human serum MALDI-TOF MS samples, we applied
various threshold parameters for denoising, and different numbers
of peaks were detected, though some common peaks were found
consistently for any threshold parameter (see Supplementary Table
1 for details). Clearly, the choice of threshold parameter affects
potential features that can be detected; however, few (if any) existing
software packages or methods can set wavelet denoising parameters
in an objective way. Using Wave-spec’s feedback concepts, we
are able to provide relatively data-driven objective parameters for
denoising.

Peak alignment across spectra is even more difficult, but it is an
indispensable step to acquire the n×p feature-sample matrix for
further statistical analysis. Recently, some researchers have tried
to solve this problem using different strategies: Tibshirani et al.
(2004) proposed an effective peak alignment algorithm based on
a hierarchical clustering idea; Morris et al. (2005) used the mean
spectrum to find common peaks, which avoids the peak alignment
step. In fact, a good common peak finding algorithm should have the
following properties: (i) it can define a specific common feature, say
mz1, by setting appropriate boundaries on the m/z domain; (ii) any
peak detected on a single spectrum within the boundaries should be

Fig. 5. Method comparison: number of peaks within boundary.

identified as mz1; and (iii) the boundaries should be wide enough to
include all peaks on an individual spectrum that correspond to mz1,
but not too wide to cover two or more other features. To evaluate
the performance of different algorithms, we can set up metrics to
assess these properties, such as number of total common peaks,
common peak window width (a precision metric) and number of
peaks included within a certain window (an efficiency metric). An
ideal common peak finding method should include the maximum
number of true peaks from an individual spectrum in a relatively
narrow range. The evaluation results are summarized in Figures 4
and 5. Figure 4 shows the differences among the three methods in
terms of average common peak width. Figure 5 shows the number of
peaks included in common peak ranges. In both cases, we evaluated
these metrics at different intensity thresholds; by using intensity
thresholds on the average spectrum, we ignore the low-intensity
peaks that are more likely to be noisy peaks. The results indicate that
the Wave-spec package found a shorter common feature boundary
range, but included more peaks in that range.

Averaging, as a fundamental principle underlying many statistical
methods (Morris et al., 2005), sheds some light on the general peak
distribution of a dataset. Averaging is robust and easy to perform.
However, the potential risk of only considering the average spectrum
is that we might be penalized for ignoring intensity heterogeneity
in some regions across spectra. To illustrate using this dataset,
we chose regions with abundant peaks and high variation. For
instance, we chose the region of m/z 11 300–11 800 Da. As we see
in Figure 6, there are many peaks (fragments of serum amyloid A)
in this region. Some spectra are flat; others have high intensities;
and many have peaks around 11 450 Da and 11 750 Da, both of
which are next to higher peaks. On the mean spectrum, however,
there is no clear bump for the peaks around 11 450 and 11 750 Da
(Fig. 6).

Although Wave-spec and the mean spectrum method provide a
similar common peak set, some differences still exist (Figs 7 and 8).
Figure 7 shows common peaks identified by the mean spectrum
method (Morris et al., 2005), while Figure 8 shows common peaks
identified by Wave-spec. The x-axis shows m/z range from 11 000
to 12 400; the y-axis shows intensity. The superimposed rectangles
highlight the boundaries of common peaks detected by each method.
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A

B

Fig. 6. A high-variation region: all spectra (A) and average spectrum (B).

Fig. 7. Common peaks identified by mean spectrum method.

Fig. 8. Common peaks identified by Wave-spec.

From the plots, we can tell that: (i) Wave-spec detected some peaks
in many spectra of a dataset that are not identified on the mean
spectrum, especially for regions with high variation across spectra,
and (ii) Wave-spec defined common peaks across spectra within
narrower boundaries. The mean spectrum method defines the range
of a common peak based on two local minima adjacent to a local
maximum, and it can be too wide to include multiple different
features. The clustering method of Tibshirani et al. (2004) splits
peaks into subgroups, but it is difficult to set accurate boundaries
using this method.

For feature extraction, we used the coefficient of variation
(CV) to compare region-based and maximum height-based feature
measuring methods. The result can be seen in Supplementary
Figure 3; the paired t-test showed that the AUC method yields
smaller CVs on all common features than does the single maximum
point measurement method, with P < 0.001.

3.3 MALDI-TOF MS reflectron-mode data for
frog-skin fluid samples

One unique feature of Wave-spec is that it can handle
MALDI-TOF MS data acquired in reflectron mode, which
has not yet been discussed in the preprocessing literature.
Such data have the advantage of high resolution in detecting
protein isotopes. (For more details about reflectron-mode data,
see http://keck.med.yale.edu/prochem/procmald.htm.) However,
preprocessing of MALDI-TOF MS reflectron-mode data is
especially difficult because of the high resolution and prevalence
of isotopes. Generally, such preprocessing requires advanced signal
processing techniques to extract features by envelope signal
detection prior to peak detection, which introduces variation and
makes quantification more complex. Wave-spec, however, offers an
effective and efficient way to detect all peaks and align clusters of
peaks across spectra. Also, quantification by area under all isotopes
is robust.

The major challenges of high-resolution data are to cluster a
group of isotope peaks as one protein/peptide, to align peak clusters
across spectra and then to quantify them. Denoising is not our
major concern here, as high-resolution data are relatively clean.
Supplementary Figure 4 shows a global view of spectra with isotope
peaks, as well as a magnification of a smaller range for a closer
look. In this figure, we see the clear pattern of isotope peak clusters.
We first calibrated the spectra on the time domain (Supplementary
Figure 5 shows data before and after calibration); next we followed
standard MALDI-TOF MS data preprocessing steps: denoising,
baseline correction, normalization and peak selection on individual
spectra. Then, the kernel method was applied to estimate the peak
distribution curve. Since KDE is also a low-pass filter, the curve
shows one large peak rather than multiple bumps when there are
clusters of peaks across spectra (Supplementary Fig. 6). Following
the feedback procedure described in Section 2, we then detected the
boundaries of different features across spectra and quantified them
by measuring the region between the boundaries. In this way, we
detected and quantified features across spectra acquired in reflectron
mode. Given common peaks’ m/z, one can obtain the expected
isotopic distribution, e.g. by the use of averagine (Senko et al.,
1995). We also were able to detect and quantify isotope information
for each feature on individual spectra.
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4 DISCUSSION AND CONCLUSION
The major contribution of this article is to incorporate wavelet
denoising techniques and KDE into an iterative feedback procedure.
This allows us to obtain optimal parameter settings through
a relatively objective, data-driven process, which may increase
reproducibility. The feedback concept has been widely applied
to engineering in areas such as control theory and signal
processing. In our comparison of feature-detection methods, Wave-
spec outperformed the two alternative algorithms (Morris et al.,
2005; Tibshirani et al., 2004) in terms of both precision and
efficiency (with, respectively, a narrower common peak window
width than the mean spectrum method, and more peaks included
within a certain window than the clustering method). From another
angle, the Wave-spec feedback process can be viewed as a
novel wavelet shrinkage algorithm. Unlike the traditional wavelet
shrinkage methods, such as SURE, developed by Donoho and
Jonestone (1995), Wave-spec uses the features’variation index as the
penalty item. With a preset cutoff, it can automatically approximate
the optimal wavelet threshold values for an MS dataset. Wave-spec
provides a framework that can deal with different types of MS data:
MALDI/SELDI TOF MS data, mass spectra with isotopic peaks and
full-scan LC MS data. The use of complex peptide and metabolite
mixtures in LC MS requires alignment in two dimensions: the
m/z dimension and the retention time dimension (Listgarten and
Emili, 2005). The Wave-spec method can be applied to detect
common peaks at different retention times on the m/z domain
and, through the feedback mechanism, will choose optimum peak
filtering parameters objectively. The framework also is applicable to
‘feature-interested’ analysis of functional one-dimensional or two-
dimensional biomedical data, for instance, 2D gel proteomics data.
Compared to alternative algorithms, the Wave-spec framework can
extract and quantify features more accurately and robustly from
functional biomedical data. In summary, detection and quantification
of functional biomedical MS data features is the key step for
data mining, as these features are the only information source for
further analysis. The algorithms developed and adapted in Wave-
spec ensure that the results of preprocessing possess the desired
qualities of precision, efficiency, robustness and reproducibility.
Adopting feedback concepts, Wave-spec has the ability to obtain
optimal parameter setups, thus ensuring a more accurate common
peak list across all spectra and improving biomarker identification
and profile pattern recognition.
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