
Algorithm for Optimal Triangulations in Scattered

Data Representation and Implementation

Bradley W. Dyer1 and Don Hong1,2

Scattered data collected at sample points may be used to determine simple

functions to best fit the data. An ideal choice for these simple functions is

bivariate splines. Triangulation of the sample points creates partitions over which

the bivariate splines may be defined. But the optimality of the approximation is

dependent on the choice of triangulation. An algorithm, referred to as an Edge

Swapping Algorithm, has been developed to transform an arbitrary triangulation

of the sample points into an optimal triangulation for representation of the

scattered data. A Matlab package has been completed that implements this

algorithm for any triangulation on a given set of sample points.

KEY WORDS: Bivariate splines; optimal triangulations; scattered data

representation.

1. INTRODUCTION

In many applications, it is desirable to approximate a given surface with a
high degree of accuracy. Scattered data on the surface may be collected by
recording the distance from sample points in a fixed plane to the surface.
Once the scattered data has been collected, it is necessary to determine
simple functions to interpolate, or best fit, the data. An ideal choice for these
simple functions is bivariate splines. Since a bivariate spline is piecewise-
defined over its planar domain, it is necessary to create a partition of the
sample points in the plane. One of the most applicable partitions in this case
is triangulation.

A triangulation of a finite set of n sample points vi ¼ ðxi; yiÞ, i ¼ 1; . . . ; n
in a plane is defined as a collection � of triangles satisfying (1) the vertices of
the triangles are precisely the sample points vi, (2) the union of the triangles
in � is a connected set, and (3) the intersection of any two adjacent triangles

1
Department of Mathematics, East Tennessee State University, Johnson City, Tennessee 37614-

0663.
2
To whom correpondence should be addressed. e-mail: hong@etsu.edu

Journal of Computational Analysis and Applications, Vol. 5, No. 1, January 2003 (# 2003)

25
1521-1398/03/0100-0025/0 � 2003 Plenum Publishing Corporation

in � is either a common vertex or a common edge. The vertex set of the
triangulation � will be denoted as V.

There are clearly many distinct triangulations on a sufficiently large
finite set of vertices. Since the optimality of the approximation using
bivariate splines is affected by the choice of triangulation, it is necessary to
determine the optimal triangulation for representation of the scattered data.

Naturally, the idea of an optimal approximation of scattered data
varies depending on the desirable properties of the approximation problem.
In this paper, the optimal order of approximation is determined with respect
to the order r of smoothness and degree k of the bivariate splines. The
approximation order is defined over the triangulation’s spline space Sr

kð�Þ,
the subspace of Crð�Þ of all splines with total degree � k and with grid lines
given by the edges of the triangulation �. Note that Crð�Þ is the space of
functions that are differentiable and continuous on the ith derivative for
0 � i � r.

Given the spline space S :¼ Sr
kð�Þ, the approximation order of S is the

largest integer � such that distð f;SÞ � C j�j� for all sufficiently smooth
functions f in S and an approximation constant C dependent only on f and
the smallest angle of �. Here, j�j represents the maximum diameter of any
triangle in � (see [1]).

It can be shown that the approximation order of Sr
kð�Þ cannot be higher

than kþ 1, and is trivially kþ 1 in the case where r ¼ 0. A triangulation �
will be called an optimal triangulation if Sr

kð�Þ achieves the optimal approx-
imation order of kþ 1 for a fixed pair of integers ðk; rÞ (see [6]).

A considerable amount of research has been accomplished on deter-
mining the conditions under which Sr

kð�Þ achieves the optimal approx-
imation order. It was proven in 1970 by Z̆enis̆ek in [9] that Sr

kð�Þ achieves
the optimal approximation order for k � 4rþ 1. This means that any tri-
angulation is optimal for Sr

kð�Þ when k � 4rþ 1. By 1987, de Boor and
Höllig proved theoretically in [1] that the optimal approximation order for
Sr
kð�Þ is actually obtained as soon as k � 3rþ 2. Later, Chui, Hong, and Jia

were able to constructively prove that Sr
kð�Þ attain the optimal approx-

imation order of kþ 1 when k � 3rþ 2, as appeared in [5] in 1995. Con-
sequently, any triangulation � is optimal for Sr

kð�Þ if k � 3rþ 2.
Since lower degree spline spaces are preferable for application pur-

poses, it is beneficial to determine optimal triangulations for Sr
kð�Þ when

k � 3rþ 1. This paper will specifically focus on spline spaces of C1 quartic
splines, S14ð�Þ. A convenient triangulation of uniformly spaced lattice points
is the three-directional mesh, denoted as �ð1Þ and illustrated in Fig. 1(a).
However, de Boor and Jia proved in 1993 in [2] that the bivariate spline
space Sr

kð�
ð1ÞÞ attains an approximation order of at most k for k � 3rþ 1.

So �ð1Þ is not an optimal triangulation for the spline space Sr
k when

26 Dyer and Hong

k � 3rþ 1. In particular, S14ð�
ð1ÞÞ attains an approximation order of 4, but

not the optimal approximation order of 5. So S14ð�
ð1ÞÞ is not optimal for C1

quartic splines.
A couple of techniques have been implemented in recent years to

determine optimal triangulations for C1 quartic splines. In 1996, Chui and
Hong developed in [3] a scheme known as a Local Refinement Scheme to
transform an arbitrary triangulation of data points into an optimal tri-
angulation for C1 quartic splines. The disadvantage of this scheme is that it
requires the inclusion of additional data points and often in applications no
scattered data is available for additional data sites. Later, Hong and
Mohapatra developed in [7] a mixed three-directional mesh which is an
optimal triangulation for C1 quartic splines on the existing data points.
However, the disadvantage of this technique is that the data points cannot
be arbitrary.

A more versatile triangulation scheme has been introduced in [4],
known as a type-O triangulation, which is an optimal triangulation for C1

quartic splines on the existing arbitrary data points. For this scheme, the
concept of a type-O vertex of a triangulation is developed. A vertex u will be
called a type-O vertex of a triangulation � if u satisfies at least one of the
following conditions.

(i) u is a boundary vertex of �;
(ii) u is an interior vertex of � of degree 4;
(iii) u is an interior vertex of � of odd degree;
(iv) u is an interior vertex and there exists a vertex � of � satisfying

either � is an interior vertex of odd degree or degree 4 or � is a
boundary vertex such that ½u; �	 is a nondegenerate edge of � with
respect to u.

(a) (b)

Fig. 1. Triangulations �ð1Þ and �ð2Þ.

Algorithm for Optimal Triangulations in Scattered Data Representation 27

It should be noted from the definition that the degree of a vertex � refers to
the number of edges in the triangulation incident to �. Also, given three
consecutive edges ej
1, ej, and ejþ1 incident to a common vertex �, the edge ej
is called degenerate with respect to � if the two edges ej
1 and ejþ1 are
colinear. The set of all type-O vertices in V will be denoted as VO.

Now a type-O triangulation is defined as a triangulation of V with only
type-O vertices. The following theorem reveals that a type-O triangulation is
an optimal triangulation for C1 quartic splines. See [4].

Theorem 1. Any type-O triangulation � admits the 5th order of
approximation from S14ð�Þ.

It is a direct result of this theorem that any odd-degree triangulation is
a type-O triangulation. Also, the four-directional mesh, denoted as �ð2Þ and
illustrated in Fig. 1(b), is a type-O triangulation. Thus, the following cor-
ollary is evident.

Corollary 2. (a) If a triangulation � contains only odd-degree interior
vertices, then there exists an interpolation scheme from S14ð�Þ that attains
the 5th order of approximation.

(b) There exists an interpolation scheme from S14ð�
ð2ÞÞ that yields the

5th order of approximation.

2. AN EDGE SWAPPING ALGORITHM FOR OPTIMAL

TRIANGULATIONS

It has been shown that given any vertex set V, a type-O triangulation of
V admits the optimal 5th order of approximation for C1 quartic splines. In
this chapter, an algorithm will be developed to transform any arbitrary tri-
angulation� ofV into a type-O triangulation �̂� by an edge swapping process.

Given an interior edge e of a triangulation �, Qe will be used to denote
the quadrilateral formed by the two triangles sharing e as a common edge.
Let the four vertices of Qe be labeled �1; . . . ; �4 in the clockwise direction so
that the edge e is ½�1; �3	; i.e., the endpoints of e are �1 and �3. Then an edge
swap may be performed by removing e from � and adding a new edge
½�2; �4	. As proposed in [8], an edge e is considered a swappable edge only if
Qe is convex and no three of its vertices are colinear. This condition ensures
that the new partition formed by the edge swap is a triangulation.

Two vertices of � are referred to as neighbors of each other if they are
endpoints of the same edge in �. Hence, while �1 and �3 were neighbors in �

28 Dyer and Hong

in the above example, �2 and �4 became neighbors in the new triangulation
after the edge e was swapped.

Given any set V of vertices, it is clear that there exists a triangulation �
with vertices exactly those of V, provided that the vertices are not all
colinear. Denote the set of vertices in V that are not type-O vertices of � as
~VV. Then it can be seen from the definition of a type-O vertex that if a vertex
u 2 ~VV, then u and its neighbors with nondegenerate edges with respect to u
must be even-degree vertices of degree greater than or equal to 6.

So for any vertex u 2 ~VV, an appropriate edge swap with an edge inci-
dent to u will reduce the degree of u by one, resulting in an odd-degree vertex
which is type-O. The remaining question is whether it is always possible
given any triangulation to perform an appropriate edge swap for a vertex in
~VV. The desired results are obtained from the following lemma, with Eu

denoting the set of all edges incident to u in V.

Lemma 3. For every interior vertex u with deg(u)� 5, there is a
swappable edge e 2 Eu.

Proof. Let n :¼ deg(u) and label the neighbors of uvi; i ¼ 1; . . . ; n in
the clockwise direction. Note that a set of consecutive angles with vertex at u
may be represented as

[n

i¼1

½�i; u; �iþ1	;

where �nþ1 :¼ �1. If �i :¼ ff�i
1�i�iþ1, then
Pn

i¼1 �i becomes the summation
of the interior angles of an n-sided polygon. Thus,

Xn

i¼1

�i ¼ ðn
 2Þ�:

Suppose that �i < � for at most two values of i. Then there are at least n
 2
angles �i such that �i � �. So the sum of these angles is

Pn
2
j¼1 �j � ðn
 2Þ�,

which implies the contradiction that the remaining two angles are of degree
0. Thus, at least three of the �i’s are less than �.

Let �i :¼ ff�iu�iþ1. Clearly,
Pn

i¼1 �i ¼ 2� since this is the sum of the
consecutive angles with vertex at u. So

Pn
i¼1ð�i þ �iþ1Þ ¼ 4� since each of

these angles are counted twice.
Suppose that �i þ �iþ1 exceeds � for at least three values of

i ¼ 1; . . . ; n
 1. Then
Pk

i¼1ð�i þ �iþ1Þ for these k values of i is minimized at
k ¼ 3, where these values are chosen so that four angles are considered and
two angles are counted twice. Without loss of generality, these angles can be

Algorithm for Optimal Triangulations in Scattered Data Representation 29

relabeled as a1; a2 ¼ a3; a4 ¼ a5; a6, where ai þ aiþ1 > � for three values of
i ¼ 1; . . . ; 5. But regardless of which three values of i are chosen, the sum
a1 þ a2 þ a4 þ a6 > 2�, which is a contradiction. Thus, �i þ �iþ1 exceeds �
for at most two values of i.

Since at least three of the �i’s are less than �, there must be at least one
vertex �i such that both �i ¼ ff�i
1�i�iþ1 and ff�i
1u�iþ1 ¼ �i
1 þ �i are less
than �. Therefore, the quadrilateral Q :¼ ½�i
1; �i; �iþ1; u	 is convex, and
consequently, the edge ½u; �i	 is swappable. &

Now that it is known that for any vertex u in ~VV of a triangulation there
exists an edge swap changing u to a type-O vertex, it is clear that any
triangulation of a finite set V may be transformed to a type-O triangulation
by a finite number of edge swaps. An algorithm, referred to as a Swapping
Algorithm, has been developed in [4] to transform any such triangulation �
into a type-O triangulation �̂�.

Swapping Algorithm

The new triangulation generated by applying this Swapping Algorithm
to a triangulation � will now be denoted as �̂�. Since �̂� is a type-O tri-
angulation, the following theorem is obtained.

Theorem 4. Every finite set V of sample points admits a triangulation
�̂� so that S14ð�̂�Þ attains the 5th order of approximation.

3. MATLAB IMPLEMENTATION OF THE EDGE SWAPPING

ALGORITHM

A Matlab package has been completed which applies the Edge Swap-
ping Algorithm to any triangulation on a finite set of vertices to construct a

Do while (~VV 6¼ ;)
Pick any vertex u in ~VV and consider its neighbors.
Pick any neighbor � of u so that the edge ½u; �	 is swappable.
Swap ½u; �	, yielding a new edge ½u0; �0	.
Form a subset of ~VV by deleting from ~VV all the neighbors w of w0 :¼
u; �, u0, or �0, with ½w;w0	 being a nondegenerate edge with respect to w.

Call this subset ~VV.
Enddo

30 Dyer and Hong

type-O triangulation of the sample points. The package includes a main
function swap.m as well as subfunctions consecv.m, delrow.m, findrow.m,
findtri.m, nbors.m and trimesh2.m, a modification of the Matlab 5.0
function trimesh.m. See Appendix for the source codes of these functions.

The input variables for the main function swap:m are two n� 1 vectors x
and y, an integer n, and an r� 3 matrix tri where r is an integer. The vectors
x and y are defined so that the n sample points are ðxðiÞ; yðiÞÞ for i ¼ 1; . . . ; n.
The tri matrix indexes into the x and y vectors so that each row of tri is a
triangle where each entry t in the row is a vertex ðxðtÞ; yðtÞÞ of the triangle.

The function first defines a vector z of length n as a vector of zeros,
since only planar triangulations will be considered. A matrix V is then
defined so that the ith row of V is the point ðxðiÞ; yðiÞ; zðiÞÞ. This results in the
convention that each entry of the tri matrix is equivalent to the row
number in V of the respective point. Note that in Matlab, Vði; :Þ represents
the ith row of V.

A new matrix Vn is set equal to V. Throughout the execution of the
program, this matrix will represent the set of points that have not yet been
characterized as type-O vertices of the triangulation. The outermost loop
determines for each point Vði; :Þ in V whether it is a type-O vertex and, if so,
performs an edge-swap followed by the removal of appropriate vertices
from Vn.

The findrow subfunction is first used to determine if the point
Vði; :Þ 2 Vn. Its input arguments are three real numbers xx, yy, zz and a
3� c matrix Vn, c an integer. Vn is searched for a row Vnðj; :Þ ¼ ½xx; yy; zz	.
If such a row is found then the output argument row is set equal to j. Else,
row is set to 0. If Vði; :Þ 62 Vn, then the next value of i is considered since
Vði; :Þ is already a type-O vertex.

The nbors subfunction is next applied to the point Vði; :Þ. Its input
arguments are the 3� n matrix V, an integer i representing the row number
of the point in V, the tri matrix which indexes into V, and the number r of
row s in tri. The output arguments are a k� 3 matrix N whose rows are the
neighbors of Vði; :Þ, the number k of neighbors, and the number t of tri-
angles incident to Vði; :Þ. The neighbors of Vði; :Þ are determined by first
searching the tri matrix with findrow for any row with an entry i. This row
would represent a triangle with a vertex at Vði; :Þ. The output argument t
represents the number of such rows found in tri. For each row found with
an i entry, the points indexed by the other two entries are added to the N
matrix if no such row already exists.

The process of determining if Vði; :Þ is a type-O vertex begins with
initializing a variable det1 to zero, which will be set equal to one if Vði; :Þ is
found to be type-O. The following lemma will be used to identify the
boundary vertices of the triangulation.

Algorithm for Optimal Triangulations in Scattered Data Representation 31

Lemma 5. A vertex � of a triangulation � is a boundary vertex of � iff
the number of neighbors of � does not equal the number of triangles in �
sharing a vertex at �.

Consequently, a vertex Vði; :Þ is found to be a boundary vertex if k 6¼ t after
applicaton of the nbors subfunction. Since the degree of a vertex is equal to
the quantity of its neighbors, Vði; :Þ is of degree 4 if k ¼ 4. Also, Vði; :Þ is of
odd degree if kðmod2Þ ¼ 1.

In order to check condition 4 of the type-O criteria, it is necessary to
consider the neighbors of each neighbor of Vði; :Þ. For each point Nð j; :Þ in
N, the corresponding row is located in V using findrow, and the nbors

subfunction is applied to this point in V. The new parameters are a matrix
NN containing the neighbors of Nð j; :Þ, the number kk of neighbors, and tt
of triangles incident to Nð j; :Þ. Condition 4ðaÞ is satisfied for an interior
neighbor Nð j; :Þ of Vði; :Þ if kk ¼ 4 or kkðmod2Þ ¼ 1. Condition 4ðbÞ is
satisfied for a boundary neighbor Nð j; :Þ of Vði; :Þ if ½Vði; :Þ;Nð j; :Þ	 is a
nondegenerate edge of the triangulation with respect to Vði; :Þ.

The subfunction consecv is used to help determine if ½Vði; :Þ;Nð j; :Þ	 is
nondegenerate with respect to Vði; :Þ. Its input arguments are a 1� 3 vector
� representing a point, a 1� 3 vector �1 representing a neighbor of �, a k� 3
matrix N of the neighbors of �, an integer k, the vertex set V, and the tri
matrix. The output arguments are the two 1� 3 vectors �0 and �2 needed to
form the quadrilateral Qe, where e ¼ ½�; �1	. The subfunction consecv first
removes �1 from N, which is then relabeled as M. This is accomplished by
using the subfunction delrow, which accepts a matrix A and an integer i and
modifies A by deleting the ith row. The subfunction findrow was previously
used to locate the row number of �1 in N. Next, a vector A is set equal to the
vector from � to �1, and for each neighbor Mði; :Þ of � in M, a vector B is
assigned to the vector from � to Mði; :Þ. The angle between A and B is
calculated each time until a neighbor �0 is found that minimizes this angle.
The vector from � to �0 is then labeled as BB, and delrow is used to create a
new matrix L by removing �0 from M.

For each neighbor Lði; :Þ of � in L, a vector C is assigned to the vector
from � to Lði; :Þ. It is not sufficient to determine �2 simply by locating a
remaining neighbor that minimizes the angle between A and C, since the
edges determined by BB and C cannot be on the same side of the edge
determined by A. So �2 is found to be the neighbor in L so that the angle
between A and C is the minimal one that does not equal the sum of the
angles between A and B and B and C.

Once the vertices �0 and �2 that form the quadrilateral associated with
the edge ½Vði; :Þ;Nð j; :Þ	 have been located, it is possible to determine if
½Vði; :Þ;Nð j; :Þ	 is nondegenerate with respect to Vði; :Þ. This is true if

32 Dyer and Hong

½Vði; :Þ; �0	 and ½Vði; :Þ; �2	 are not colinear, which is checked by calculating
the respective slopes.

If the vertex Vði; :Þ is found to be type-O, then Vði; :Þ is removed from
the matrix Vn using findrow and delrow, and the next value of i is con-
sidered. Else, the program will seek to perform an edge swap with an edge
incidental to Vði; :Þ. Recall that an edge e is swappable if the quadrilateral Qe

is convex and no three of its vertices are colinear.
Each neighbor Nðh; :Þ of Vði; :Þ is considered until a swappable edge is

found. The latter condition is satisfied if the slope of ½Vði; :Þ; �0	 does not
equal the slope of ½Vði; :Þ; �2	 and the slope of ½Nðh; :Þ; �0	 does not equal the
slope of ½Nðh; :Þ; �2	. In order to determine if Qe is convex, where
e ¼ ½Vði; :Þ;Nðh; :Þ	, the barycentric coordinates of Vði; :Þ are calculated. For
an arbitrary triangle 	 ¼ ½�0; �1; �2	 in a quadrilateral ½�0; �1; �2; �3	, the
barycentric coordinates, Ci, i ¼ 0 . . . 2 of the remaining vertex x are defined
to be Ai=A, where A is the ordered area of 	 and Ai is the ordered area of the
triangle formed by replacing �i with x in 	. The convexity of the quad-
rilateral may then be tested by the following lemma.

Lemma 7. A quadrilateral Q ¼ ½�0; �1; �2; �3	 is convex if a vertex �i of
Q has a negative barycentric coordinate.

The barycentric coordinates of Vði; :Þ are determined using determinates to
calculate the ordered areas. If Vði; :Þ is found to have a negative barycentric
coordinate, then Qe is convex and ½Vði; :Þ;Nðh; :Þ	 is a swappable edge of the
tri triangulation. After a swappable edge is found, the row numbers of
Nðh; :Þ, �0, and �2 in V are labeled as r�, r�0, and r�2, respectively.

Now the desired edge swap is to swap the edge e ¼ ½Vði; :Þ;Vðr�; :Þ	 of
Qe with a new edge e0 ¼ ½Vðr�0; :Þ;Vðr�2; :Þ	. This may be accomplished by

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

(a)

5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

(b)

Fig. 2. Triangulation and optimal triangulation for a given set of data sites.

Algorithm for Optimal Triangulations in Scattered Data Representation 33

modifying the tri matrix so that the two rows representing triangles with
edge e in common are replaced by two rows with edge e0 in common. The
first task is to locate the two triangles in tri which have e in common. The
subfunction findtri is used for this purpose. Its input arguments are three
integers a, b, and c representing the row numbers in V of three vertices and
the tri matrix. The subfunction findrow is used repeatedly to search for
any row of tri containing a permutation of the integers a, b, and c. If such a
row is found, then the output argument t is assigned to this row number.
Else, t is set equal to zero.

The edge swap is accomplished by first finding the row number t1 of the
triangle in tri whose vertices index into rows i, r�, and r�0 of V as well as
the row number t2 of the triangle with indices i, r�, and r�2 using findtri.
Next, rows t1 and t2 of tri are replaced by two new rows, one with indices i,
r�0, and r�2, and one with indices r�, r�0, and r�2. This completes the edge
swap, and Vði; :Þ is now a type-O vertex.

The next step in implementing the Edge Swapping Algorithm is to form
a subset of Vn by deleting from Vn all the neighbors w of w0 :¼ Vði; :Þ,
Vðr�; :Þ, Vðr�0; :Þ, or Vðr�2; :Þ, with ½w;w0	 being a nondegenerate edge with
respect to w. The deletion of these vertices from Vn is possible since the edge
swap results in all of these neighbors satisfying the type-O criteria. For each
neighbor Nða; :Þ of Vði; :Þ, consecv is used to determine the other vertices �0
and �2 forming Qe for e ¼ ½Vði; :Þ;Nða; :Þ	. Then the appropriate slopes are
compared to determine if e is a nondegenerate edge with respect to Vði; :Þ. If
so, findrow and delrow are used to remove Nða; :Þ from Vn. This same
procedure is repeated for the other three vertices Vðr�; :Þ;Vðr�0; :Þ; and
Vðr�2Þ of w

0.
After the outermost loop has been executed for all the vertices in V, Vn

will be an empty matrix and the tri matrix will represent a type-O tri-
angulation of the vertices in V. The remaining step is to display the type-O
triangulation of the vertex set. This is achieved by the trimesh2 subfunc-
tion, which is a modification of the Matlab 5.0 subfunction trimesh to
output triangulations on a planar grid. Its input arguments are the tri

matrix and the x and y vectors, and it returns the triangulation as a figure.
The swap program may be used to effectively implement the Edge

Swapping Algorithm on any initial triangulation of sample points for which
a triangulation admitting an optimal approximation with C1 quartic splines
is desired. Fig. 2(a) shows a triangulation of some scattered sample points
which has been defined in Matlab using the x and y vectors and the tri

matrix. This triangulation was transformed by swap to the type-O tri-
angulation in Fig. 2(b) with a single edge swap. The first non-type-O vertex
encountered by swap was located at (25, 15). As the neighbors of this vertex
were considered, the neighbor at (18, 22) was the first one found to form a

34 Dyer and Hong

swappable edge. The resulting edge swap was sufficient to create the type-O
triangulation in the latter figure.

Recall that the three-directional mesh �ð1Þ is a convenient triangulation
for a collection of uniformly spaced lattice points, but it is not optimal for
C1 quartic splines. Figure 3(a) depicts a type-O triangulation resulting from
an application of swap to the sample �ð1Þ in Fig. 1. Since swap considers the
vertices of the initial triangulation in sequential order, the type-O triangu-
lation returned by swap may be dependent on the order in which the vertices
are defined in the x and y vectors. The result in Fig. 3(a) was achieved by
ordering the vertices from the bottom to the top of each column, beginning
with the leftmost column. Figure 3(b) depicts a quite different type-O tri-
angulation of this vertex set, where only the direction of the diagonals in the
initial triangulation was changed. This illustrates how the output of swap on
a particular vertex set may be changed, when desirable, by reordering the
vertices or altering the initial triangulation.

ACKNOWLEDGMENTS

This research was supported in part by a Research Development Grant
#00-007/m from East Tennessee State University. The authors are also very
grateful to the anonymous referees for their valuable comments and sug-
gestions which helped improve the writing of this paper.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

(a)

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

(b)

Fig. 3. Optimal triangulations from �ð1Þ.

Algorithm for Optimal Triangulations in Scattered Data Representation 35

APPENDIX. MATLAB 5.0 SOURCE CODES

SWAP.M
function X = swap(x, y, n, tri)

z = zeros(1, n);

[r c] = size(tri);

for i = 1:n

V(i, :) = [x(i) y(i) z(i)];

end

Vn = V;

rec = 0;

for i = 1:n

if findrow(V(i, 1), V(i, 2), V(i, 3), Vn) = 0

[N, k, t] = nbors(V, i, tri, r);

det1 = 0;

if k = t,

det1 = 1;

elseif k == 4,

det1 = 1;

elseif mod(k, 2) == 1,

det1 = 1;

end

for j = 1:k

row = findrow(N(j, 1), N(j, 2), N(j, 3), V);

[NN, kk, tt] = nbors(V, row, tri, r);

if kk == tt

if kk == 4 | mod(kk, 2) == 1

det1 = 1;

end

elseif det1 = 1

[v0, v2] = consecv(V(i, :), N(j, :), N, k, V, tri);

if (v0(1) - V(i, 1)) = 0 & (v2(1) - V(i, 1)) = 0

slope1 = (v0(2) - V(i, 2))/(v0(1) - V(i, 1));

slope2 = (v2(2) - V(i, 2))/(v2(1) - V(i, 1));

if slope1 = slope2

det1 = 1;

end

elseif (v0(1) - V(i, 1)) = (v2(1) - V(i, 1))

det1 = 1;

end

end

end

36 Dyer and Hong

if det1 == 1

row = findrow(V(i, 1), V(i, 2), V(i, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

elseif findrow(V(i, 1), V(i, 2), V(i, 3), Vn) = 0

for h = 1:k+1

if h == k+1

det1 = -1, break

end

if findrow(N(h, 1), N(h, 2), N(h, 3), Vn) = 0

[v0, v2] = consecv(V(i, :), N(h, :), N, k, V, tri);

if (v0(1)-V(i, 1)) = 0 &(v2(1)-V(i, 1)) = 0 &(v0(1)-N(h, 1)) =0

&(v2(1)-N(h, 1)) =0

slope1 = (v0(2) - V(i, 2))/(v0(1) - V(i, 1));

slope2 = (v2(2) - V(i, 2))/(v2(1) - V(i, 1));

slope3 = (v0(2) - N(h, 2))/(v0(1) - N(h, 1));

slope4 = (v2(2) - N(h, 2))/(v2(1) - N(h, 1));

if slope1 = slope2 & slope3 = slope4

rv0 = findrow(v0(1), v0(2), v0(3), V);

rv2 = findrow(v2(1), v2(2), v2(3), V);

rv = findrow(N(h, 1), N(h, 2), N(h, 3), V);

A = det([1 V(rv0,1) V(rv0,2); 1 V(rv2,1) V(rv2,2),

1 V(rv,1) V(rv,2)]);

c0 = det([1 V(i,1) V(i,2); 1 V(rv2,1) V(rv2, 2),

1 V(rv,1) V(rv,2)])/A;

c1 = det([1 V(rv0,1) V(rv0,2); 1 V(i,1) V(i,2),

1 V(rv,1) V(rv,2)])/A;

c2 = det([1 V(rv0,1) V(rv0,2); 1 V(rv2,1) V(rv2,2),

1 V(i,1) V(i,2)])/A;

if c0<0 | c1<0 | c2<0

break

end

end

elseif (v0(1)-V(i, 1)) =(v2(1)-V(i, 1)) &(v0(1)-N(h, 1)) =(v2(1)-

N(h, 1))

rv0 = findrow(v0(1), v0(2), v0(3), V);

rv2 = findrow(v2(1), v2(2), v2(3), V);

rv = findrow(N(h, 1), N(h, 2), N(h, 3), V);

A = det([1 V(rv0,1) V(rv0,2); 1 V(rv2,1) V(rv2,2),

1 V(rv,1) V(rv,2)]);

c0 = det([1 V(i,1) V(i,2); 1 V(rv2,1) V(rv2, 2),

Algorithm for Optimal Triangulations in Scattered Data Representation 37

1 V(rv,1) V(rv,2)])/A;

c1 = det([1 V(rv0,1) V(rv0,2); 1 V(i,1) V(i,2),

1 V(rv,1) V(rv,2)])/A;

c2 = det([1 V(rv0,1) V(rv0,2); 1 V(rv2,1) V(rv2,2),

1 V(i,1) V(i,2)])/A;

if c0<0 | c1<0 | c2<0

break

end

end

end

end

if det1 = -1

t1 = findtri(i, rv, rv0, tri);

t2 = findtri(i, rv, rv2, tri);

tri(t1, :) = [i rv0 rv2];

tri(t2, :) = [rv rv0 rv2];

rec = rec + 1;

for a = 1:k

[v0, v2] = consecv(V(i, :), N(a, :), N, k, V, tri);

if (v0(1) - V(i, 1)) = 0 & (v2(1) - V(i, 1)) = 0

slope1 = (v0(2) - V(i, 2))/(v0(1) - V(i, 1));

slope2 = (v2(2) - V(i, 2))/(v2(1) - V(i, 1));

if slope1 = slope2

row = findrow(N(a, 1), N(a, 2), N(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

elseif (v0(1) - V(i, 1)) = (v2(1) - V(i, 1))

row = findrow(N(a, 1), N(a, 2), N(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

end

[Nrv, kk, tt] = nbors(V, rv, tri, r);

for a = 1:kk

[v0, v2] = consecv(V(rv, :), Nrv(a, :), Nrv, kk, V, tri);

if (v0(1) - V(rv, 1)) = 0 & (v2(1) - V(rv, 1)) = 0

slope1 = (v0(2) - V(rv, 2))/(v0(1) - V(rv, 1));

slope2 = (v2(2) - V(rv, 2))/(v2(1) - V(rv, 1));

if slope1 = slope2

38 Dyer and Hong

row = findrow(Nrv(a, 1), Nrv(a, 2), Nrv(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

elseif (v0(1) - V(rv, 1)) = (v2(1) - V(rv, 1))

row = findrow(Nrv(a, 1), Nrv(a, 2), Nrv(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

end

[Nrv0, kk, tt] = nbors(V, rv0, tri, r);

for a = 1:kk

[v0, v2] = consecv(V(rv0, :), Nrv0(a, :), Nrv0, kk, V, tri);

if (v0(1) - V(rv0, 1)) = 0 & (v2(1) - V(rv0, 1)) = 0

slope1 = (v0(2) - V(rv0, 2))/(v0(1) - V(rv0, 1));

slope2 = (v2(2) - V(rv0, 2))/(v2(1) - V(rv0, 1));

if slope1 = slope2

row = findrow(Nrv0(a, 1), Nrv0(a, 2), Nrv0(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

elseif (v0(1) - V(rv0, 1)) = (v2(1) - V(rv0, 1))

row = findrow(Nrv0(a, 1), Nrv0(a, 2), Nrv0(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

end

[Nrv2, kk, tt] = nbors(V, rv2, tri, r);

for a = 1:k

[v0, v2] = consecv(V(rv2, :), Nrv2(a, :), Nrv2, kk, V, tri);

if (v0(1) - V(rv2, 1)) = 0 & (v2(1) - V(rv2, 1)) = 0

slope1 = (v0(2) - V(rv2, 2))/(v0(1) - V(rv2, 1));

slope2 = (v2(2) - V(rv2, 2))/(v2(1) - V(rv2, 1));

if slope1 = slope2

row = findrow(Nrv2(a, 1), Nrv2(a, 2), Nrv2(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

Algorithm for Optimal Triangulations in Scattered Data Representation 39

end

elseif (v0(1) - V(rv2, 1)) = (v2(1) - V(rv2, 1))

row = findrow(Nrv2(a, 1), Nrv2(a, 2), Nrv2(a, 3), Vn);

if row = 0

Vn = delrow(Vn, row);

end

end

end

end

end

end

end

rec

trimesh2(tri, x, y);

CONSECV.M
function [v0, v2, vargout] = consecv(v, v1, N, k, V, tri)

row = findrow(v1(1), v1(2), v1(3), N);

M = delrow(N, row);

A = v1 - v;

theta = 1000;

for i = 1:k-1

B = M(i, :) - v;

dotp = sum(A.*B);

theta2 = acos(dotp/(norm(A)*norm(B)));

if theta2 < theta

v0 = M(i, :);

theta = theta2;

BB = B;

end

end

row = findrow(v0(1), v0(2), v0(3), M);

L = delrow(M, row);

theta1 = 1000;

for i = 1:k-2

C = L(i, :) - v;

dotp = sum(A.*C);

theta2 = acos(dotp/(norm(A)*norm(C)));

dotp = sum(BB.*C);

theta3 = acos(dotp/(norm(BB)*norm(C)));

if theta2 < theta1 & theta3 + theta = theta2

v2 = L(i, :);

theta1 = theta2;

40 Dyer and Hong

end

end

DELROW.M
function [A, varargout] = delrow(A, i)

t = A;

[r c] = size(A);

A = zeros(r -1, c);

for j = 1:i-1

A(j, :)=t(j, :);

end

for j = i+1:r

A(j-1, :)=t(j, :);

end

FINDROW.M
function [row, varargout] = findrow(xx,yy,zz,Vn)

[r c] = size(Vn);

for i = 1:r+1

if i == r+1

row = 0; break, end

if Vn(i, 1)==xx & Vn(i, 2)== yy & Vn(i, 3)==zz

row = i; break, end

end

FINDTRI.M
function [t, varargout] = findtri(a, b, c, tri)

if findrow(a, b, c, tri) = 0

t = findrow(a, b, c, tri);

elseif findrow(a, c, b, tri) = 0

t = findrow(a, c, b, tri);

elseif findrow(b, a, c, tri) = 0

t = findrow(b, a, c, tri);

elseif findrow(b, c, a, tri) = 0

t = findrow(b, c, a, tri);

elseif findrow(c, a, b, tri) = 0

t = findrow(c, a, b, tri);

elseif findrow(c, b, a, tri) = 0

t = findrow(c, b, a, tri);

else

t = 0;

end

NBORS.M
function [N, k, t] = nbors(V, i, tri, r)

k = 0; t = 0;

Algorithm for Optimal Triangulations in Scattered Data Representation 41

N = zeros(1, 3);

for j = 1:r

if tri(j, 1) == i,

t = t + 1;

if findrow(V(tri(j, 2),1), V(tri(j, 2),2), V(tri(j, 2),3), N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 2), :)];

end

if findrow(V(tri(j, 3),1), V(tri(j, 3),2), V(tri(j, 3), 3),N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 3), :)];

end

elseif tri(j, 2) == i,

t = t + 1;

if findrow(V(tri(j, 1),1), V(tri(j, 1),2), V(tri(j, 1),3), N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 1), :)];

end

if findrow(V(tri(j, 3),1), V(tri(j, 3),2), V(tri(j, 3),3), N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 3), :)];

end

elseif tri(j, 3) == i,

t = t + 1;

if findrow(V(tri(j, 1),1), V(tri(j, 1),2), V(tri(j, 1),3), N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 1), :)];

end

if findrow(V(tri(j, 2),1), V(tri(j, 2),2), V(tri(j, 2),3), N) == 0,

k = k + 1;

N(k, :) = [V(tri(j, 2), :)];

end

end

end

TRIMESH2.M
function hh = trimesh(tri,x,y,varargin)

ax = newplot;

start = 1;

if nargin>3 & rem(nargin-3,2)==1,

c = varargin1;

start = 2;

elseif nargin<3

42 Dyer and Hong

error(‘Not enough input arguments’);

else

for k = 1:length(x)

c(k) = 1;

end

end

if isstr(get(ax,‘color’)),

fc = get(gcf,‘Color’);

else

fc = get(ax,‘color’);

end

h = patch(‘faces’,tri,‘vertices’,[x(:) y(:)],

‘facevertexcdata’,c(:),...

‘facecolor’,fc,‘edgecolor’,get(ax,‘defaultsurfacefacecolor’),...

‘facelighting’, ‘none’, ‘edgelighting’, ‘flat’,...

vararginstart:end);

if ishold, view(2), grid on, end

if nargout==1, hh = h; end

REFERENCES

1. C. de Boor and K. Höllig, Approximation power of smooth bivariate pp functions, J. Math.

Z. 197, 343–363 (1988).

2. C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth

bivariate pp functions, Approx. Theory 72, 24–33 (1993).

3. C. K. Chui and D. Hong, Construction of local C1 quartic spline elements for optimal-order

approximation, Math. Comp. 65, 85–98 (1996). MR 96d:65023.

4. C. K. Chui and D. Hong, Swapping edges of arbitrary triangulations to achieve the optimal

order of approximation. SIAM J. Numer. Anal. 34, 1472–1482 (1997).

5. C. K. Chui, D. Hong, and R. Q. Jia, Stability of optimal-order approximation by splines

over arbitrary triangulations, Trans. of Amer. Math. Soc. 374, 3301–3318 (1995). MR

96d:41012.

6. D. Hong, Optimal triangulations using edge swappings, in Approximation Theory VIII,

Vol. 1, (C. K. Chui and L. L. Schumaker, eds.), World Scientific Publishing Co., Inc., 1995,

pp. 249–256.

7. D. Hong and R. N. Mohapatra, Optimal-order approximation by mixed three-directional

spline elements, J. Comp. Math. Appl. 40, 127–135 (2000).

8. L. L. Schumaker, Computing optimal triangulations using simulated annealing, J. Comp.

Aided Geometric Design 10, 329–345 (1993).

9. A. Z̆enis̆ek, Interpolation polynomials on the triangle, Numer. Math. 15, 283–296 (1970).

Algorithm for Optimal Triangulations in Scattered Data Representation 43

