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Abstract

Airline yield management has been a topic of research since the dereg-

ulation of the airline industry in the 1970’s. The goal of airline yield

management is to optimize seat allocations of a flight among the different

fare products. In this paper, we use econometrics modeling to construct

market demand functions. Then multiple linear regression is applied to

the market demand functions. The use of multiple linear regression allows

for an improved discussion of elasticity, cost degradation, and passenger

diversion. A model is then constructed to optimize revenue for domes-

tic flights. This paper answers the following specific research questions:

How does the use of price elasticities and cross price elasticities improve

previous models? Does the use of income elasticity improve the market

demand functions? Conditions for optimality are then discussed using the

estimated market demand functions.
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1 Introduction

Airline yield management, a hot topic of research since the 1970’s, is used to op-
timize seat allocations of a single flight among the different fare products. Most
models for airline yield management can be grouped into one of the following
two categories: a price discrimination model or a product differentiation model.
Price discrimination models assume that when a consumer chooses to purchase
a lower priced fare product they do so at no additional cost. If the lower priced
fare product requires a purchase of 14 days in advance or any other restrictions
applied to a discount purchase, which would not have been encountered by a
higher priced fare product, the assumption states that there is no cost to the
consumer for accepting more restrictions.

There is an extensive study by Morrison and Winston [6] which estimates
the additional costs for accepting more restrictions. Their study supports the
need to eliminate the assumption imposed by price discrimination models. The
other category, product differentiation models, assumes the demand for fare
product i is independent of the demand for fare product j and independent of
the price of any other fare products. This paper supports the need to eliminate
the assumptions imposed by both the price and product discrimination models.

Botimer and Belobaba [2] introduced a generalized cost model of airline
fare product differentiation. Their model for air travel demand in an origin-
destination market is extended to include degradation costs and passenger diver-
sion. These extensions eliminate the unrealistic assumptions made by previous
price discrimination models and product differentiation models. Degradation
costs are the costs to consumers who wish to downgrade to a lower fare prod-
uct. The lower fare product requires the acceptance of a restriction(s) which
may come as a cost to the consumer. Their initial demand function without
degradation costs is

Qi = fi(Pi) −

i−1∑

j=1

Qj,

where Qi denotes the number of passengers purchasing fare product i, fi( · ) is
the market demand function for fare product i, Pi is the price of fare product i,
and Qj is the number of passengers held captive to fare products less restricted
than fare product i.

Note that fare product i + 1 is defined to impose more restrictions than fare
product i. The model in [2] is designed with the following criteria:
(1) fi+1 < fi < fj for j < i.
(2) The market demand function is a positive function determined by customers,
competitors, prices, etc. and exploited by the individual airlines.
(3) The consumers arrive in increasing order of willingness to pay.
(4) Demand for fare product i is derived from unrestricted fare product 1.

To include degradation costs, costs associated with consumers for accepting
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more restrictions, their demand function then becomes

Qi+1 = fi+1(Pi+1 +

i−1∑

j=1

cj) −

i−1∑

j=1

Qj ,

where, ci is the cost to each consumer for accepting the imposed restrictions.
Note that c1 is zero because there are no restrictions for the full fare product,
and thus no cost to consumers. Their model assumes ci is a constant cost
functional form for simplicity reasons. The consumers perceived cost of fare
product i is higher than the actual price of fare product i. Thus as Botimer and
Belobaba state in [2], “their willingness to purchase fare product i is reduced
by ci as compared to fare product i − 1. ”

The model in [2] for air travel demand is extended to include passenger
diversion to eliminate the assumption of previous product differentiation models.
This is designed to include a fixed percentage of the expected demand for any
fare product. Thus the number of passengers actually purchasing fare product
i is represented by qi,

qi = (1 −

N∑

j=i+1

dij)Qi +

i−1∑

j=1

djiQj ,

where, dij denotes the percentage of passengers diverting from fare product i to
a more restricted fare product j.

Finally, their optimizing revenue function is constructed only for the linear
case of the constant cost model where,

Pi = P0 − a
∑i−1

j=1 Qj −
∑i−1

j=1 cj

is strictly nonincreasing. The Lagrange Multiplier Method is used to maximize
the following revenue objective function which includes degradation costs and
passenger diversion:

R =
N∑

i=1

(1 −
N∑

i=1

dij)Qij [P0 − a

i∑

k=1

Qk −
i∑

r=1

cr]

+
N∑

i=1

N∑

j=i+1

djiQj [P0 − a

j∑

k=1

Qk −

j∑

r=1

cr].

This model leaves room for improvement as most models do. In [2], the
authors mentioned several areas for further research. Under the topic on pas-
senger diversion, the authors suggested the use of cross price elasticity effects in
a model. Under the topic on degradation costs, the authors suggested that con-
stant cost formulation does not realistically reflect consumer behavior. That is,
“costs incurred may differ by passenger rather than being constant.” So there is
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a need to determine the effects of passenger behavior. In this paper, comparing
to the model in [2] constructed only for the linear case of the constant cost
model, we construct a model of market demand function using econometrics
modeling that could be used for forecasting consumer behavior in the airline
industry. Based on a stratified random sample from the U.S. Department of
Transportation’s Domestic Airline Fares Consumer Report of 1997, we deter-
mine the market demand functions including price and cross price elasticity with
and without income elasticity using multiple linear regression. We further an-
alyze these results and determine a generalized objective function. In the final
section, we apply Lagrange multiplier method to solve the the airline revenue
maximization problems.

2 Market Demand Function

Econometrics modeling of the air travel demand will allow us to observe cost
degradation and passenger diversion in action. Instead of fixing the percentage
of diversions between the fare products and having a constant degradation cost
ci, we shall model existing behaviors in hopes to be able to better forecast future
consumer behavior. For research of econometric modeling, we refer to the book
[7]: Econometric Models and Econometric Forecasts.

To understand econometrics modeling and how this can work for airtravel
demand, we first recall some basic concepts of elasticity. An elasticity measures
the effect on the dependent variable of a 1 percent change in an independent
variable. Therefore, we can monitor change of the dependent variable Qi of a 1
percent change in an independent variable Pi, where Qi is demand for a product
and Pi is the price for this product. This situation is called price elasticity. We
can also monitor Qi of a 1 percent change in another independent variable Pj .
This situation is called cross price elasticity. Elasticities are easy to work with
due to the facts that their values are unbounded, values may be positive or
negative, and are unit-free. A market demand function which includes price
elasticity and cross price elasticity may prove to be a more realistic approach
to consumer behavior.

Econometric modeling for demand yields the following equation for fare
product i

Qi = βi0P
βi

i Πi6=jP
βij

j eεi ,

where, Qi is a continuous, dependent variable representing quantity demanded
for fare product i, βi0 is an unbounded and unit-free constant, βi is the price
elasticity which is unbounded and unit-free for fare product i, βij is the un-
bounded and unit-free cross price elasticity for fare product i by change in price
j, Pi is an independent variable representing price of fare product i, and εi is
the error term which assumes a normal distribution.

An econometric model of airline demand shall yield as many equations as
there are fare products. Thus for simplicity purposes we shall model demand
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aggregating passenger services into three fare products. That is, fare product
1 will have demand function Q1 representing demand for first class or full fare
products, fare product 2 will have demand function Q2 representing demand for
standard economy class or first class with some restrictions, and fare product
3 will have demand function Q3 representing the demand for discount fareclass
or standard economy class with many more restrictions. Q2 usually requires
advance purchase of 3 days while Q3 usually requires an advance purchase of 14
or more days.

It is clear that we only want to include necessary independent variables. It
is not necessary to include P3 in Q1 due to the fact that demand in first class
is not effected by price changes of fares in the discount fareclass. However,
as we will see, we must include P1, P2, and P3 in Q2 and only P3 and P2 in
Q3. Realistically, demand should be effected by the above fareclass and below
fareclass changes in price. Thus standard economy fareclass, in the three fare
product model, is the only fare product that has two cross price elasticities. In
order to linearize the model, we take the natural log of each Qi yielding the
following three fare product market demand functions:

ln Q1 = β10 + β1 ln P1 + β12 ln P2 + ε1,

ln Q2 = β20 + β2 ln P2 + β21 ln P1 + β23 ln P3 + ε2,

ln Q3 = β30 + β3 ln P3 + β32 ln P2 + ε3.

For the multiple linear regression model, we let qi = ln Qi and xi = ln Pi. Thus
we have the following three market demand functions:

q1 = β10 + β1x1 + β12x2 + ε1,

q2 = β20 + β2x2 + β21x1 + β23x3 + ε2,

q3 = β30 + β3x3 + β32x2 + ε3.

The assumptions of these multiple linear regressions in [7] are: the relation-
ship between qi and xi is linear, the xi’s are non-stochastic variables and in
addition, no exact linear relationship exists between two or more independent
variables, the error term has zero expected value for all observations, the error
term as constant variance for all observations, and the error term is normally
distributed.

With these assumptions, we would like to use the model to analyze con-
sumer behavior through the use of price elasticities and cross price elasticities.
Therefore, we select a sample of approximately 250 flights to monitor consumer
behavior. The data from the 250 flights are the data for qi’s and xi’s in the above
model. We use multiple linear regression to search for parameter estimates, β’s,
that minimize the error sums of squares.

The squared sum of errors is SSEi =
∑

j(e
(j)
i )2 =

∑
j(q

(j)
i − q̂

(j)
i )2, where

q
(j)
i is the observed value for the natural log of demand of the flight j and q̂

(j)
i

157LINEAR REGRESSION MODEL



is the predicted value for the natural log of the demand of the flight j. Thus
we will have 250 equations for quantity demanded for each of the qi’s with
the unknown elasticities β’s. Using multiple linear regression we will have one
predicted demand function for each of the qi’s:

q̂i = β̂i0 + β̂ixi + β̂i(i−1)xi−1 + β̂i(i+1)xi+1, i = 1, 2, 3.

This model needs more than three observations, that is, three or more flights.
Multiple linear regression is used to solve for β̂i and β̂ij for i 6= j. Then β̂i0

can be solved. The parameter estimates are defined as the following for q̂1 and
similarly for q̂2 and q̂3:

β̂1 =
(
∑250

i=1 x
(i)
1 q

(i)
1 )(

∑250
i=1(x

(i)
2 )2) − (

∑250
i=1 x

(i)
2 q

(i)
1 )(

∑250
i=1 x

(i)
1 x

(i)
2 )

(
∑250

i=1(x
(i)
1 )2)(

∑250
i=1(x

(i)
2 )2) − (

∑250
i=1 x

(i)
1 x

(i)
2 )2

,

β̂12 =
(
∑250

i=1 x
(i)
2 q

(i)
1 )(

∑250
i=1(x

(i)
2 )2) − (

∑250
i=1 x

(i)
1 q

(i)
1 )(

∑250
i=1 x

(i)
1 x

(i)
2 )

(
∑250

i=1(x
(i)
1 )2)(

∑250
i=1(x

(i)
2 )2) − (

∑250
i=1 x

(i)
1 x

(i)
2 )2

,

and

β̂10 = q̄1 − β̂1x̄1 − β̂12x̄2,

where q̄1 = 1
250

∑250
i=1 q

(i)
1 , and q

(i)
1 is the observed value for the natural log of

demand of the flight i. x̄1 and x̄2 are defined similarly.

3 Main Results and Analysis

To estimate our price and cross price elasticities, a stratified random sample is
chosen from U.S. Department of Transportation’s Domestic Airline Fares Con-
sumer Report of 1997. This report of the 1,000 largest city-pair markets within
the 48 states accounts for approximately 75 percent of all 48-state passengers
flights. The 1,000 flights are divided into groups determined by their nonstop
distance. A separate simple random sample (SRS) is used to select from the
list of flights whose nonstop distance ranges from 100–300 miles, 500–700 miles,
900–1100 miles, 1300–1500 miles, and 1900–2100 miles. The combined SRS in
each category yields 250 randomly selected flights; 25 percent of the population
of interest.

The prices used for the three fare class model are current prices given from
various search engines comprised of www.flyaow.com, www.travelocity.com, and
www.bestlodgings.com. These search engines allow us to determine the average
prices for each of the three fare classes. The price for standard economy is de-
termined by requiring an advanced purchase of 3 days and 14 days for discount
fareclass. The model could also include average median incomes of the city of
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departure and the city of arrival. Therefore, in the following, the demand func-
tions will first be solved using price elasticity and cross price elasticity. Then the
demand functions will be solved using price, cross price, and income elasticity.
Finally, we use statistical analysis to determine whether income elasticity is a
useful independent variable for quantity demanded.

Using SAS and applying multiple linear regression to the data for the 250
flights yields the following results:

Market Demand Functions (with price and cross price elasticity)

q̂1 = 9.61 − .253x1 − .650x2, r2 = .411,

q̂2 = 10.8 − .550x2 − .224x1 − .123x3, r2 = .414,

q̂3 = 10.7 − .172x3 − .793x2, r2 = .468,

where r2 (adj) is .406, .407, and .464 respectively.
Market Demand Functions (with price and cross price elasticity plus income

elasticity)

q̂1 = 5.15 − .225x1 − .669x2 + .423I, r2 = .415,

q̂2 = 6.38 − .570x2 − .216x1 − .126x3 + .419I, r2 = .418,

q̂3 = 6.1 − .169x3 − .791x2 + .439I, r2 = .473,

where r2 (adj) is .408, .409 and .467 respectively and I is the average of the
cities (departure and arrival) median family incomes.

Analysis of the model involves several different methods. The methods used
here are described in [4]. First, we must analyze the assumptions of the model.
One is that the random error term assumes a normal distribution. The his-
tograms of the residuals plotted against each of the independent variables: q1,
q2, and q3 indicate a few outliers which may cause a lower than usual measure
of fit. Overall, the three histograms appear to have a normal distribution. Thus
the analysis of these histograms do not give any indication that the normality
assumption of the model has not been met. The normal probability plots of the
residuals against each q1, q2, and q3 also show a few possible outliers. Accord-
ing to [4],“an outlier among residuals is one that is far greater than the rest
in absolute value and perhaps lies three or four standard deviations or further
from the mean of the residuals.” Thus there are some concerns from these plots
that a few of the flights do not have data that are typical to the rest of the
flights. Never the less, the linearity in each of the plots suggests their are no
indications that the normality assumption has not been met. Also, the plots
of the residuals against the fitted values for q1, q2, and q3 show a few outliers.
However, if we remove these outliers, our graph shows constant variance. Thus
our assumptions have been met.

Second, we must analyze the cross price elasticity, to verify its importance
in the model. We can analyze the analysis of variance tables (ANOVA) to
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Table 1: Analysis of Variance: q1 regress on x1

Source DF Sum Sq.s Mean Sq. F-Value Prob> F

Model 1 52.69197 52.69197 143.321 0.0001
Error 250 91.91282 0.36765
C Total 251 144.60480

Root MSE 0.60634 R-square 0.3644 Adj R-sq .03618

Parameter Estimates

Variable DF β Estimate Standard Error

INTERCEP 1 10.006380 0.48941062
X1 1 -0.912193 0.07619605

Variable T:β =0 Prob > |T |

INTERCEP 20.446 0.0001
X1 -11.972 0.0001

easily verify the importance of cross price elasticity. The Tables 1–3 are the
ANOVA tables for q1 regressed onto each of the independent variables x1, x2,
and I. Most obvious from the ANOVA tables are the p-values. The p-value for
q1 = f(x1) is nearly zero (Table 1) and the p-value for q1 = f(x2) is also nearly
zero (Table 2). The regression of q1 on both x1 and x2 yields the following sums
of squares and the proportion of variations:

SSR(x1) = 48.6686, SSR(x2|x1) = 10.4507, r2
1 = .3365, r2

x2|x1
= .1089.

These are located in Table 4. It is clear that the demand for the full fare product
relies on the price of fare product 2. The data tells us that before x2 is added
to the model, the q1 with only x1 in the model had a proportion of variations
of .3365. And then, once x2 is added to the model, the proportion of variations
by x2 after x1 in the model becomes .1089. It suggests that the model includes
cross price elasticity. The necessity for the cross price elasticity can be observed
in the same way for q2 and q3.

Thus the question still remains, what independent variable is missing from
the model? r2 for all three market demand functions are in the .40 range.
For observational data, there are hopes for r2 to be closer to the .60 range.
Therefore, the research was expanded to check for another possible independent
variable that may explain the proportion of variations in the quantity demanded.
The research expanded to include income elasticity in the model. Since the
consumers are purchasing a product, the income for the consumers is an obvious
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Table 2: Analysis of Variance: q1 regress on x2

Source DF Sum Sq.s Mean Sq. F-Value Prob> F

Model 1 58.61769 58.61769 170.426 0.0001
Error 250 85.98710 0.34395
C Total 251 144.60480

Root MSE 0.58647 R-square 0.4054 Adj R-sq 0.4030

Parameter Estimates

Variable DF β Estimate Standard Error

INTERCEP 1 9.171135 0.38523367
X2 1 -0.851072 0.06519264

Variable T:β =0 Prob> |T |

INTERCEP 23.807 0.0001
X2 -13.055 0.0001

independent variable to analyze. The income for the cities included in the
research is the 1999 incomes posted at the website:

verticals.yahoo.com/cities/categories/medfamily.html
which is being used as the best available surrogate.

Using multiple linear regression to include price elasticity, cross price elas-
ticity, and income elasticity we have the three fare product market demand
functions listed above. The r2 and r2 (adj) as compared to our original three
fare product market demand functions did not increase significantly. It is pro-
posed that income elasticity should be dropped from the model and thus not
included in the optimality procedure. We can quickly verify the significance, if
any, that income may have on q1 by observing the sums of squares of regression
between the three independent variables x1, x2, and I.

Now, including the income elasticity we have the following results from the
ANOVA tables for q1:

SSR(I|x1, x2) = .70009, r2
I|x1,x2

= .070178

Additionally, we have the following variance inflation for the three indepen-
dent variables and their p-values from the above listed ANOVA tables for q1:

x1 : 4.4024, x2 : 3.9922, I : 1.0172, px1 = .0001, px2 = .0001, pI = .0966.

The p-value is the probability for the t-test. The p-value is too high for the
independent variable income. The F-partial test also agrees with these results.
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Table 3: Analysis of Variance: q1 regress on I

Source DF Sum Sq.s Mean Sq. F-Value Prob> F

Model 1 1.59173 1.59173 2.782 0.0966
Error 250 143.01307 0.57205
C Total 251 144.60480

Root MSE 0.75634 R-square 0.0110 Adj R-sq 0.0071

Parameter Estimates

Variable DF β Estimate Standard Error

INTERCEP 1 -2.574539 4.04070019
I 1 .650506 .38997346

Variable T:β =0 Prob> |T |

INTERCEP -.637 .5246
I 1.668 .0966

Thus income does not make up for the unexplained variation. Observation of
the ANOVA tables for q2 and q3 can be done in the same way and yields similar
results. Thus income elasticity is not a necessary variable for any of the three
market demand functions and shall be removed from the model.

The fact still remains that the r2 for q1, q2, and q3 are .411, .411, and .468
respectively for the sample of 250 flights when I is excluded. Questions arise
for the improvement of the model: (1) There might be some terms we should
include in the model that can help explain the proportion of variations. For this
consideration, an immediate improvement on the model would be to include
cross product terms of xi and xj in the model of q. This implies considering
the family of the exponential models for Q and a flexible functional form would
be the translog model (see Final Remarks). (2) Do the unusual observations
have such a large effect on the variation? If we exclude a few of the unusual
observations, or place less weight on these observations, the variance is nearly
constant for each of the three fare product demands. Further analysis of the plot
of q1 versus the predicted value for q1, if we exclude a few unusual observations
then r2 = .5023. Further analysis reveals these unusual observations were data
from flights in the northeastern states whose prices for first class and standard
economy class were extremely high. Several flights had first class prices above
$1200 and standard economy class above $900. So further research is needed
to improve the model. Research that may involve looking for a key indicator,
possibly for the regions of the 48 states since there is some variation in prices
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Table 4: Analysis of Variance: q1 regress on x1, x2

Source DF Sum Sq.s Mean Sq. F-Value Prob> F

Model 2 59.416 29.708 86.83 0.0001
Error 249 85.189 .342
C Total 251 144.60480

Root MSE 0.5849 R-square 0.4141 Adj R-sq 0.406

Parameter Estimates

Variable DF β Estimate Standard Error

INTERCEP 1 9.6117 .4804
X1 1 -.2533 .1658
X2 1 -.6503 .1467

Variable T:β =0 Prob> |T |

INTERCEP 20.01 0.0001
X1 -1.53 0.128
X2 -4.43 0.0001

in the different regions.

From the analysis of the market demand functions we have no reason to
doubt our normality assumptions and no reason to doubt our optimality model
shall exclude income elasticities. These market demand functions reveal con-
sumer behavior within these 250 flights. It is obvious that the changes in price
of standard economy class fare products directly effects demand for first class
and discount fare class. We can observe the effects of consumer behavior; that
is passenger diversion, from these market demand functions. These cross price
elasticities offer a clearer picture of the number of passengers who will divert
to a lower priced fare product given an increase in price. From the multiple
linear regression model, we have observed how consumers react to the degrada-
tion costs and the passenger diversion that occurs once we increase or decrease
a price of other fare products. Forecasting the future behavior of passenger
diversion based on their current behavior is desired.

4 Optimality

The objective now is to maximize revenue, where the decision variables are the
prices of the three fare products. Recall, xi is the natural logarithm of the price
of fare product i and qi is the natural logarithm of the quantity demanded for
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fare product i. Initially our objective function defined in terms of price and
quantity yields the following problem.

maxR =

3∑

i=1

exieqi ,

subject to
3∑

i=1

eqi ≤ capacity.

However, to analyze revenue in terms of price only, we shall rewrite the
objective function to include the values of qi in terms of xi. Also the constraint
shall be rewritten in terms of price. For linearity purposes, the model is designed
such that the input for capacity (CAP ) will be the logarithm of the capacity of
the aircraft. Therefore we have the following problem.

maxR = e9.61+.747x1−.650x2 + e10.8+.45x2−.224x1−.123x3 + e10.7+.828x3−.793x2 ,

subject to:
31.11− .477x1 − 1.99x2 − 0.295x3 − CAP ≤ 0.

Therefore, we have a nonlinear optimization problem of the constrained case.
Our objective function is clearly convex. However, the objective function

is bounded by the capacity of the aircraft. The optimal prices for revenue
shall occur when the

∑i=3
i=1 eqi is exactly equal to the capacity of the aircraft.

Therefore, to find the optimal revenue we apply the Lagrange multiplier method
to solve for optimal prices using price elasticity and cross price elasticity as our
independent variables.

Our objective function is

f(x1, x2, x3) = e9.61+.747x1−.650x2 +e10.8+.45x2−.224x1−.123x3 +e10.7+.828x3−.793x2 .

The constraint is:

g(x1, x2, x3) = 31.11 − CAP − .477x1 − 1.99x2 − .295x3 = 0.

From the condition ∇f = λ∇g, We can solve the unknowns x1, x2, x3 and λ,
and thus, the optimal prices for revenue.

The data used for the econometric modeling was based on the average daily
purchases for the flights. This model is constructed such that an input value for
the daily capacity for the aircraft would yield optimal prices for revenue given
the market demand functions constructed had a larger r2. Since the values of
xi is ln Pi, there is a large difference between an x1 = 6.4 and x1 = 6.46, a
difference of 38 dollars. Thus when solving the system of equations, we must be
very careful to watch the precisions of the digits.
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This model appears to be a sound method to use. The model is set up to
maximize daily revenues based on price and cross price elasticities. The steps for
analysis are clear and the structure of the optimality is clear. Further research
into indicator variables for the market demand functions could yield a more
accurate model and then using the optimality equations in the same way should
prove to output more realistic prices for each of the three fareclasses. The study
could be extended to include international and domestic flights. Then the model
would have up to N-fare products. The structure would be the same, the market
demand functions would be as follows:

q̂i = β̂i0 + β̂ixi + β̂i(i−1)xi−1 + β̂i(i+1)xi+1.

And we would like to

maxR =

N∑

i=1

eβ̂i0+(1+β̂i)xi+β̂i(i−1)xi−1+β̂i(i+1)xi+1 ,

subject to

N∑

j=1

(β̂j0 + β̂j1x1 + β̂j2x2 + · · · + β̂jNxN ) − CAP = 0.

5 Final Remarks

1. Despite its simplicity, the linear model is too restrictive and cannot accom-
modate for the variation in the data. Modern studies of demand and production
are usually done in the context of a flexible functional form. Flexible functional
forms are used in econometrics because they allow analysts to model second
order effects. The most popular flexible functional form is the translog model,
which is often interpreted as a second-order approximation to an unknown func-
tional form. Let ln y = f(lnx1, · · · , ln xk). Then its second-order Taylor series
around (x1, · · · , xk) = (1, · · · , 1) is in the form

ln y = β0 +

k∑

i=1

βk ln xi +
1

2

k∑

i,j=1

γij ln xi ln xj + ε.

Since the value of r2 in the linear model is at best 0.473, we may consider to
apply the translog model for a better fitting. Recently, translog models were
used in [3] for the study of productivity change model in the airline industry.

2. Principal component analysis (PCA) involves a mathematical procedure
that transforms a number of (possibly) correlated variables into a (smaller) num-
ber of uncorrelated variables called principal components. The first principal
component accounts for as much of the variability in the data as possible, and
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each succeeding component accounts for as much of the remaining variability
as possible. In principal component analysis (PCA), the data are fit to a linear
model by computing the best linear approximation in the sense of the quadratic
error.

Have noted that the r2 could be improved to a more satisfactory level, we
may want to include more variables in the linear model. However, to select
as few key independent variables as possible in the model, applying the PCA
technique in the modeling will be a good idea. Recently, PCA was applied
in [1] for the evaluation of deregulated airline networks with an application to
Western Europe.

3. In [5], a new analytical procedure for joint pricing and seat allocation
problem was developed using polyhedral graph theoretical approach consider-
ing demand forecasts, number of fare classes, and aircraft capacities. Three
equivalent models were formulated in the paper: The first model is a 01 inte-
ger programming model. The second model is obtained from the first model
using the notion of constraint aggregation. The third model is derived by ex-
ploiting the special data structure of the first model and utilizing the concepts
of split graphs and cutting planes. A decision-support tool was developed for
price structure designers to be able to consider a wide variety of possibilities
concerning the number of fare classes.
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