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Abstract—We consider solutions of a system of refinement equations with a 4 X 1 function vector
and three nonzero 4 X 4 coefficient matrices. We give explicit expressions of coefficient matrices
such that the refinement function vector and the corresponding wavelet vector have properties of
short support [0, 2], symmetry or antisymmetry, and orthogonality. The properties of convergence of
the subdivision scheme, approximation order, and smoothness of the refinement functions are also
discussed. © 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Wavelet theory is based on the idea of multiresolution analysis (MRA). Usually, an MRA is gen-
erated by one scaling function. However, such wavelets cannot possess the properties of short
support, symmetry or antisymmetry, and orthogonality simultaneously. The study of multi-
wavelets was initiated by Goodman, Lee and Tang in [1]. Then Goodman and Lee in [2] gave
a characterization of scaling functions and wavelets. Multiwavelets open new possibilities in the
construction of wavelets with those properties based on multiscaling functions. Multiwavelets
have more freedom in their construction. Therefore, they can have shorter support with more
vanishing moments than a single wavelet, and they may have orthogonality and symmetry at the
same time. These properties are very desirable in many applications. Thus, multiwavelets can be
very useful for various practical problems (see [3,4], for examples). The literature on this subject
is growing rapidly (see [5] and the references therein). In this paper, we consider solutions of a
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system of refinement (scaling) equations in the form

2
$(z) =Y hep (22— k),
k=0

where ¢ is a 4 x 1 vector function, and hg, k1, and hy are 4 x 4 matrices (the sequence (hy)
of matrices is called a refinement mask). We give explicit expressions of hi, k = 0,1,2 such
that the refinement (scaling) function vector ¢ has properties of short support [0, 2], symmetry
or antisymmetry and orthogonality. The multiwavelets with the same properties as the scaling
functions are also constructed. The paper is organized as follows. In the remainder of this
section, we recall some results on multiwavelets construction. In Section 2, we construct a scaling
function vector with multiplicity 4 such that it has support on [0, 2], symmetry or antisymmetry,
and orthogonality. The multiwavelets with the same properties as the scaling functions are
constructed in Section 3. We discuss the properties of approximation order and analyze the
smoothness of the refinement functions in the final section.
In general, we are concerned with the system of refinement equations

N
$(z) =Y hid(2z - k), (1.1)
k=0
where hy is an 7 x © matrix, and ¢ = (¢1,62,...,6r)" is a vector of functions. The Fourier

transform of the above refinement equation is
oy (&N i€
so-u(5)(3).

N
1 .
H() =35> hee ™.
k=0

where

We denote N
1
M =H(0) = §,§)hk. (1.2)

In the Fourier domain, L2-stability of ¢ is ensured if and only if the sequences {d;k(w+27r2)} £€2Z,s
k =1,...,r are linearly independent for each w € R (see [6]).

If ¢1,..., ¢, are functions in L!(R) with stable shifts, it was proved by Dahmen and Micchelli
in [7] that the matrix M has a simple eigenvalue 1 and all other eigenvalues of M are less than 1
in modulus. Therefore, we may assume that the r x r matrix M has the following form:

10 . n_
M= <O A) and nlgrgoA =0. (1.3)

Under assumption (1.3), it was proved by Heil and Colella in [8] that there exists a unique
vector ¢ of compactly supported distributions such that ¢ satisfies the refinement equation (1.1)

and ¢(0) = (1,0,...,0)T. Such a solution is called a normalized solution. If 3 is another
distribution solution, then we must have ¥ = C¢ for some constant C.
Let

N
Qf =) hf(2--k), feLP(R).

k=0

Then Q is a linear operator on (LP(R))" (1 < p < o0). If f is an r x 1 initial vector of compactly
supported functions in LP(R) such that Q™ f converges to the normalized solution ¢ of (1.1) in
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the LP-norm (1 < p < 00), then the subdivision scheme associated with the mask (hg) is said to
be convergent in the LP-norm.

If the subdivision scheme associated with the mask {hj} converges in the LP-norm for some p
(1 < p < ), it was proved in [9] that {hr} satisfies

el Y ha=¢el > hopy1=e¢], (1.4)

where e; is the first column of the r x r identity matrix I,..

In [10,11], the smoothness conditions of refinement functions were discussed. The method
presented in [10] is to connect the optimal smoothness v(¢) to the p-norm joint spectral radius
of the block matrices A, € = 0,1, given by Ac = (hg4+20-8)a,s OVer a certain finite-dimensional
common invariant subspace. When p = 2, the optimal smoothness is also given in terms of the
spectral radius of the transition matrix associated with the refinement mask.

We call a sequence of closed subspaces {V;};ez of L?(R) an orthogonal muitiresolution analy-
sis (OMRA) of multiplicity r if the following conditions are satisfied.

(a) V; C Vi, § € L.

(b) Ujo'i—oovj = LQ(R), n?'.;—oovj = {O}

(c) There exists a vector ¢ of functions in L2(R) such that {27/2¢,(27 - —¢); k= 1,2,...,r,
¢ € Z} forms an orthonormal basis of V.

A function vector ¢ that generates an OMRA with multiplicity » > 1 is called an orthogonal
multiscaling vector. If ¢ is an orthogonal multiscaling vector, then

HEOH +HE+m)H ((+7) =1L,

or equivalently,
> hihiram = 20moly, m € Z. (1.5)
k

Let W; be the orthogonal complements of V; in Vj,;. If there is a function vector v =
(¥1,...,%r)" such that {¢,(- — £); v = 1,2,...,r, £-€ Z} forms an orthonormal basis of Wj,
then we call functions ¥4, ..., 1, orthonormal multiwavelets. Then 9 can be expressed as

Y= gk (2 ~k)
k

and {g;} satisfies the following equations:

Z hegk+2m = 0, meZ, (1.6)
k

ng9k+2m = 20pm,01r, m € Z. (1.7)
k

2. MULTISCALING FUNCTIONS

Let ¢ be the normalized solution of (1.1). Then ¢ has support [0, N]. If ¢; is centrally
symmetric on the support [0, N| for any even number i and centrally antisymmetric on [0, N] for
any odd number i, then

¢(z) = S$(N — x), (2.1)
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where

(-1

TXT

Using this in the refinement equation (1.1), we obtain
$=S¢(N--)=) Shé(2N —2--k)
k

=Y ShiSP(2-+k—N)=> Shy_rS¢(2 k).
k

Thus, ¢ will have the desired symmetric property provided that
Shy_xS = hy, ke Z. (2.2)

We hope to find scaling functions with properties of short support, symmetry, and orthogonality.

In [12], orthogonal multiscaling functions with multiplicity 2 and support [0,2] (i.e., r = 2 and

N = 2) were constructed. However, the fact that the multiscaling functions ¢; and ¢ are in

L?(R) with orthogonal shifts were not verified in the paper. Jia, Riemenschneider and Zhou gave

the verification in {9] and constructed an entire family of orthogonal double multiwavelets that

are continuous and have symmetry. In this paper, we consider the case of r =4 and N = 2.
From (1.3), we have

1 0
h0+h1+h2=2<0 A), (2.3)

where A is a 3 x 3 matrix and all its eigenvalues are less than 1 in modulus. By (1.4), we need
e] (ho+ha) =€ hi=e]. (2.4)

Combining (2.2)-(2.4), we obtain that

- t1 0 t3

2

ho= 171 hoa haz hx ::<
0 hzy has hszg

rs haa has hy

1 0 0 O
he = 0 d2 0 u
Yo 0o d o]
0 v 0 d4
and
ha = ShyS.
From (1.5), we have
hohg + hih] + hohg =214, (2.5)

hohg = 0. (2.6)
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143 L
hy = ShoS = | 2 = 2
Sr ShS -r ShS
Then (2.6) implies
1 T
1 ~tt' =0,
Lt .5 Ta
—=r' +tShy S =0,
2 0 (2.7)
%r —ht' =0,

—rrT +hSRTS =0.

Noticing that t§ = —t, Sr = —r, we find that the second and the third equations are equivalent
in {2.7), and thus,

1
t2+t2 = T
1
haat1 + haats = 3
hsaty + hastz = 0, (2.8)

1
hagt1 + hygts = 3

and 2 2 2 2
h3, — h3s + h34 =17,

hazhag — hozhas + hzghag = 0,
haohga — haghas + hoghyq = 173,

2.9
h3y — h3s + h3, =0, 29)
hazhsa — haghas + haghas =0,
his — his + his =13
Now let us consider equation (2.5). Suppose k; is a diagonal matrix. Then
hohg + hohd = hoh{ + Shoh{ S = 21 — hih{
is again a diagonal matrix. Noticing that the matrix hohg + Shohg S has the form of
*x 0 0 O
0 = 0 =
00 x 0]’
0 x 0 =
we obtain a diagonal matrix by setting the (2, 4) entry to zero. This implies
7173 + hazhaz + hoghas + hoqhag = 0. (2.10)
Together with the third equation of (2.9), we have
hazhaz + haghas =0,
(2.11)

1173 + hoghas = 0.
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Solving this set of equations, we have

T
haz =710, hyz = —‘5’

s (2.12)
has = chay, h42=—-0—,

where 3,0 are constant. If we choose ¢3 = at;, then (1 + a?)t? = 1/4. From (2.8), we have

_ T3 . ars
21 (a—1/0) 2 (ca-1)

1 ™
=5 ( 32 ahay, an hag

o+a)
From the fourth equation of (2.9}, we have
h2
h§3 = (a2 + 1) h§4 = —3'3‘,
42
or equivalently, h3s = hag/2t;. By solving other equations of (2.9), we obtain

_l—aa

B=

oc+a’

Finally, h; can be determined by using the equation hjh{ = 214 — h()hg- -5 hohg S. Therefore,
we have the following.

THEOREM 2.1. Suppose that 8 and o+« are nonzero and 8 = (1—oa)/(c+a), (a?+1)t? = 1/4.
Let

-;— t 0 at
- 9 rif _n
2t (o + 2t(c +

ho = (o +0) , (o ) ) (2.13)
0 —ary 2—; T
r T3 _C.:i _ ors
P %(0+a)f B 2(cta)B
1

hy = d2 4 , and  hy = ShyS, (2.14)

3
dyg
for . 9
B =2-4(8%+1)r2, d§=2—%—, and  d=2-4(82+1)rs.

Then hy, hy, ho satisfy the orthogonal conditions (2.5) and (2.6).

REMARK. If 8 = 0 or 0 + a = 0, there also exist solutions for (2.5) and (2.6). For example, if
[ =0, we can follow a similar procedure as above and find a solution as follows.

1
= t 0 t
5 «
T 2try 0 2tar;
ho = 0 ar: r2 T ’
2 o 2
0 -—ars T3 r3

2t
hl = diag (1, d2, d3, d4) , and h2 = Shos,
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multiscale function 1

—0.4 1 ! 1 { A 1 A 1 1
0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2
multiscale function 2
2 T T T T H T T T T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 18 2

Figure 1. Two of the four multiscaling functions.
for
2 2 2 rs 2 r3
dy =2 —4r7, d3=2—t—2, and d; = B

Figures 1 and 2 show a set of multiscaling functions for a choice of free parameters. It is clear
that the multiscaling functions are orthogonal, either symmetric or antisymmetric, and having

support on [0, 2].
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x10™ multiscale function 3
2 T 1 T T T 1 T T T

%107 multiscale function 4
1.5 T T T T T T T T T

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1.5 L .

Figure 2. Two of the four multiscaling functions.

The following result (see [9, Theorem 8.1]) gives a necessary and sufficient condition that the
system of scaling functions and their shifts becomes an orthonormal system in L2(R).

THEOREM 2.2. The set of scaling functions ¢1, ... ,¢4 and their shifts becomes an orthonormal
system in L?(R) if and only if



Orthogonal Multiwavelets 1161

(i) the discrete orthogonal conditions in (2.5) and (2.6) are satisfied for the mask (hy), k =
0,1,2, and
(ii) the corresponding subdivision scheme converges in the L2-norm.
Therefore, we’d like to check the convergence of the corresponding subdivision scheme associ-

ated with the mask (hg), k = 0,1,2 constructed above. This can be done by using the following
result corresponding to Theorem 7.1 in [9].

THEOREM 2.3. Let hg = (h,-j)f"]‘-l:l, hy = (di,j)f,’]‘;l, and
1 0 0 0 hi1 hi2 his hu 1 0 0 0
By = 0 -1 0 0 h21 h22 h23 h24 0 -1 0 0
2" 1o 0o 1 0 hai hss hss hsa | |0 0O 1 0
0 0 0 -1 h41 h42 h43 h44 0 0 0 -1

Then the subdivision scheme associated with the mask (ht), k = 0,1, 2 converges in the L?-norm
if and only if the following conditions are satisfied.

(i) hoi = ha1 = hgyy =0,
(ii) da2 = ds2 = h3a = hgp = 0 or dg3 = dog = hoz = hog =0,
(111) d43 = h43 =0 or d34 = h34 = O, and

(iv) if C; = (Z’ h(:.,-) , B; = (3' ho“), and the 2-norm joint spectral radius p; = p2(B;, C;)

for i =2,3,4, then p; < V2 fori = 2,3,4.

3. MULTIWAVELETS FUNCTIONS

Let ho, hy, and hy be 4 x 4 matrices which satisfy the orthogonal conditions (2.5) and (2.6),
and

2
d(x) =D hrp(2z—F).
k=0

Suppose ¢ generates an MORA and % is the corresponding orthogonal multiwavelet vector of the
form

2
W(e) = gk (2~ k). (3.1)
k=0
Then gg, g1, and g» must satisfy

goga + 9191 +920 =2I,  gogg =0,
gohg + gih{ +g2hg =0.  gohg =0.

(3.2)
Suppose that Sy, S1, and S, are diagonal matrices and g; = S;h; for i = 0,1,2. Then we have
9095 = Sohohg S2 =0
and
gohg = Sohohg = 0.
In order to ensure that the multiwavelet functions are symmetric, we need Sp = Ss. This gives

g2 = Szhz = S()Shos = SSOhQS = SgOS.

By (2.5), we have
hohg + hohd =2I — hyh].
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Substituting into (3.2), we obtain
Sihih{ Sy = 2I — S5 (21 — hyh{) S,

Sihih{ = =S5 (21 = hyh{). (3.3)
Solving for S; from the second equation of (3.3), we have
Sy =85 (21 — hih]) (hah]) . (3.4)
Then solving for S2 from the first equation of (3.3), we obtain that
S2 = (hyhT) (2 = heh]) ™" (3.5)

Hence, we obtain the following.

THEOREM 3.1. Suppose h;, i = 0,1, 2 satisfy (2.5) and (2.6) and hlhf, 2 — hlh;r are invertible
diagonal matrices. Let g; = S;h; fori = 0,1,2 and S3 and S, satisfy (3.5) and (3.4), respectively.
Then g;, 1 = 0,1, 2 satisfy (3.2) and (3.3).

For h;, i = 0,1, 2 described in Theorem 2.1, we have
-1

1 1
S2 _ d% 2- d%
2 d? 2—d3
d? 2—d3
1 1
d 4
P T+ D7
- d3 - 22
2-dj ra
2
di ; d?
2-d 4(B2+1)r3
Thus,
1
da
27‘1 kV4 ,32 + 1
Sy = dst
T2
dy

27‘3 \/m

Then, we have

2 - a2
d3
Sy = =83 (21 — hyh]) (h1h]) ™" = =S; 2 — d?
d
2 -2
dj
1
21‘1\/ﬂ2 +1
do
=- T2
dst

2ra\/B72 + 1
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multiwavelet function 1

_2 1 1 L 1 i - i ] 1

multiwavelet function 2
2.5 T T T T T T T T T

Figure 3. Two of the four multiwavelet functions.

The following result [1, Theorem 8.2] gives a characterization on (g¢), & = 0,1,2 for the
orthonormality of the shifts of ¥;,...,v¥4.

THEOREM 3.2. Let (hi), k = 0,1,2 be chosen such that the matrix M = S3_ hi/2 satis-
fies (1.3), and let ¢ = (¢1,...,¢4)" be the normalized solution of the refinement equation

2
$=> hip(2-—k),

k=0
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x107 multiwavelet function 3
5 T T T T T T : . '

-5+ 4

_10 1 1 1 1 1 1 I 1 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 107 multiwavelet function 4
1.5 T T T T T T T T T—

1} -

_1 .5 1 [ 1 | Il 1 1 1 i
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4. Two of the four multiwavelet functions.

for which {¢;(- — k); 7 = 1,...,4,k = 0,1,2} forms an orthonormal system in L%(R). Let
% = (¥1,...,v%4) be the vector given by (3.1). Then v becomes a vector of multiwavelets if and
only if condition (3.2) is satisfied.

Figures 3 and 4 show the multiwavelets by a choice of a set of parameters.
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4. APPROXIMATION ORDER OF REFINEMENT FUNCTIONS

A characterization of approximation order of multiscaling (refinement) vectors using symbol
and mask was given as follows in [13].

PROPOSITION 4.1. Assume that ¢ Is an integrable solution of the matrix refinement equa-
tion (1.1) such that the integer translates of ¢y, ¢a,...,¢, are linearly independent. Then ¢
has approximation order p if and only if there are p vectors Uy, Uy, ..., Uy_1 satisfying the fol-
lowing equations:

i,
Zykgj)h2k+l =27 ) (71) vy (4.1)
k.

m=0

and
STV gy = 2790, (4.2)
k
for j=0,1,...,p— 1. Here
J .
Y(J) — J —¢ j—m - )
D=3 (o) (4.3

In this case, we have

=" v e(t + k).
k

In the situation discussed in the previous two sections, the proposition can be rewritten as the
following.

THEOREM 4.2. Let

% 31 0 ts 1

ho= | T he haz hes | hy = da ’
0 h3y hsz hi d3
T3 h42 h43 /7,44 d4

and hy = ShoS for § = diag(1,—1,1,—1) and d3 = 1/4. Then the corresponding multiscaling
vector ¢ has approximation order three if and only if one of the following conditions are satisfied.
(1) do = 1/2, t3(2hoo — 1/2) = 2hoat1, 4ritz = hog.
(2) d4 = 1/2, t1(2h44 - 1/2) = 2h42t3, 47’3t1 = h42.
(3) dy = dg =1/2, (rir2) A} (5;) —1/8.

Here, ]
2hoo — 5 2hao

A= )
2]124 2}),44 — 5
is invertible.
PROOF. We derive only the first condition. Conditions (2) and (3) can be derived similarly. In
the case we are discussing, equations (4.1) and (4.2) become
Ughy = Uy and U()(hg + ho) = Uy,
for 7 = 0 and the solution is
Uo = (ao,0,0,0)7, (4.4)

for some ag € R.
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If j = 1, then the corresponding equations are
Urhy = = (Ug + U1),

U;.

N — DN

Uiho + (Uy = Up) he =

Let Uy = (u11 w12 w13 w14 )T. Then from the first equation of (4.5), we have

1
—) uy; = 0, for i = 2,3, 4.

u11 = ag and (d,-— 5

By using the second equation of (4.5), we have

1
<2h22 - 5) ur2 + 2h4gu1s = —apty,

1
<2h33 - 5) uz =0,

1
2haguiz + (2h44 - 5) u14 = —agpts.

Combining (4.6) and the second equation of (4.7), we obtain

1 1
0, d — h =,
u13:{ 3#20r 33?64

an arbitrary number, otherwise.

(4.6)

Clearly, u2, + u2, # 0, since t7 + t3 # 0. We divide the discussion into the following three

cases.
CASE 1. If w12 # 0 but w34 = 0, then by (4.6) and (4.7), we have

1 1
- - gz — = | = 2hoat
do 5 ta( 22 2) 24t1,

and

CASE 2. If u;p = 0 but u14 # 0, then from (4.6) and (4.7) again, we obtain

1 1
dy =4 X 1 ( 44 2) 42t3,

and
a0t1
U4 = — .
14 Shas
CasE 3. If ujz # 0 and u14 # 0, then equations in (4.6) and (4.7) imply that
1 1
dz = 3 dg = X
Shay— = 2h B
(U12> B 273 42 (—aotl )
u N 1 —apts )
14 . s — : ot3

(4.10)

(4.11)

(4.12)

Now, let us consider the vector Us. In this case (j = 2), equations (4.4) and (4.5) become

1
Ushy = 1 (Up +2U, + Us)

(4.13)
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and
1
Ushg + (Ug — 2U;y + U3) hgy = ZU2. (4.14)

Denote Uy = (uar u22 uzs u2s )7. Then (4.13) implies that

1 1
U192 = Qg and (d, — Z) Ui = §u1,~, for i = 2,3,4. (415)
Consequently,
Ugg = 211,12, U4 — 2u14. (416)

Equation (4.14) can be rewritten as
1
Us <h() + ho — ZI> = (2U1 — Uo) ha.

That is,

3 1 (1)
2

Zao = '2—(10 s 2r1u ()

—2r3uy
1
(2h22 - Z) 2u1g + 4hgourg = —aoty + 2hosuie + 2ha2u14 — 2h30Us3,
. ' (4.17)
(2h33 - Z) Usg = —2ha3t1a + 2hg3uiz — 2hg3t 4,
1
4hoquip + <2h44 - Z) 2uy4 = —apts + 2hoguiz + 2hgqu1g — 2h3au13.

If uy3 = 0, then from (4.7), we see that the second and the fourth equations are satisfied.
By (4.15), we have d3 = 1/4.

ug3 can be determined by the third equation of (4.17). Therefore, as long as the first equation
is satisfied, the vector Uz will satisfy equations (4.13) and (4.14). For this purpose, we repeat
the discussion of the three cases again. Since the discussions are similar, we provide only the
discussion of Case 1. In this case, equations (4.9) and (4.17) yield that

4T'1t3 = /’L24.

Therefore, if one of the Conditions (1)—(3) is satisfied, then there are vectors Uy, Uy, and U, satis-
fying (4.1) and (4.2). Therefore, ¢ has approximation order of three according to Proposition 4.1.
On the other hand, if the vectors Uy, U, and U, satisfy (4.5), (4.13), and (4.14), then h; must
satisfy the first equation of (4.17) and so satisfy one of Conditions (1)—(3). This completes the
proof. [ |

As to the approximation order of the multiscaling functions we considered in the Section 2, we
have the following.

THEOREM 4.3. Let h;, 1 = 0,1,2 be determined as in Theorem 2.1 and ¢ be the corresponding
scaling vector of functions. Then ¢ has approximation order of only two.

Proor. Clearly, the approximation order of ¢ is at least two from Proposition 4.1 and the proof
of Theorem 4.2. In the following, we apply Theorem 4.2 to show that. the approximation order
of ¢ cannot be three. For this purpose, we need to check that none of the three conditions in
Theorem 4.2 is satisfied. We check only Condition (1) here. The fact that ¢ does not satisfy the
other two conditions can be similarly verified.
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Clearly, Condition (1) in Theorem 4.2 can be rewritten as

2—4(ﬁ2+1)rf:i
@

athay — hoy =

(4.18)
4 b
hos = darit.

Noticing that hoq = r1/2t(r + &), hog = or1/2t(c + o), we have

7

(8 +1) = 5
pri o«

=5 (4.19)

1
= dat?.

2(0+a)
Combining the third equation of (4.19) with 4t = 1/(a? + 1), we have

a? -1

2

o=—

Substituting it into 8 = (1 — ao)/(0 + a), we obtain that 3 = «. Together with the second
equation of (4.19), we have r; = —t/2, and thus,

1

This contradicts with the first equation of (4.19). ]

In [10], a characterization of smoothness of the refinement functions is given in terms of the
corresponding refinement mask. The authors there use the generalized Lipschitz space to measure
smoothness of a given function. As usual, the difference operator V,, for function f and y € R is
defined by V, f = f(-) — f(- — ¥), and the modulus of continuity of f in LP(R) (1 < p < 00) is
defined by ‘

w(fv t)P = SUPyy|<t ”Vyf”p, t20.

For a positive integer k, the k*" modulus of smoothness of f € LP(R) is defined by

wi(f,t)p = supjy < | V4 S| t=0.

p’
Let v > 0. The generalized Lipschitz space Lip*(v, LP(R)) is the collection of those functions
f € LP(R) for which

wi(f,t)p < CtY, ¥t >0 andfor some k > v,

where C is a positive constant independent of ¢.

By (Lip*(v, LP(R)))", we denote the linear space of all vectors f = (f1,...,fr)" such that
fi,..., fr € Lip*(v, LP(R)). The optimal smoothness of a vector f € (LP(R))" in the LP-norm is
described by its critical exponent v,(f) defined by

vp(f) :=sup{v; f € (Lip* (v, L? (R)))"}.

For the refinement functions constructed in Section 2, we followed the iteration steps described
in [10] and obtained that vo(¢) > 1/2 — log, a = 0.01462, where the mask a(k) = hy for k = 0,1,
and 2. :



10.

11.
12,

13.

Orthogonal Muitiwavelets 1169

REFERENCES

. T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338,

639-654, (1993).

. T.N.T. Goodman and S.L. Lee, Wavelets of multiplicity r, Trans. Amer. Math. Soc. 342, 307-324, (1994).
. V. Strela, P.N. Heller, G. Strang, P. Topiwala and C. Heil, The application of multiwavelet filter banks to

image processing, IEEE Trans. on Signal Proc. 8, 548-563, (1999).

. Q.T. Jiang, Orthogonal multiwavelets with optimum time-frequency resolution, IEEE Trans. Signal Process.

46, 830-844, (1998).

. G. Plonka and V. Strela, From wavelets to multiwavelets, In Math. Methods for Curves and Surfaces II,

(Edited by D. Dahlem, T. Lyche and L. Schumaker), pp. 375-399, Vanderbilt University Press, (1998).

. R.-Q. Jia and C.A. Micchelli, On linear independence of integer translates of a finite number of functions, In

Proc. Edinburgh. Math. Soc., Volume 36, pp. 69-85, (1992).

. W. Dahmen and C.A. Micchelli, Biorthogonal wavelets expansions, Constr. Approz. 13, 293-328, (1997).
. C. Heil and D. Colella, Matrix refinement equations: Existence and uniqueness, J. Fourier Anal. Appl. 2,

363-377, (1996).

. R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Vector subdivision schemes and multiple wavelets, Math.

Comp. 87, 1533-1563, (1998).

R.Q. Jia, S.D. Riemenschneider and D.X. Zhou, Smoothness of multiple refinable functions and multiple
wavelets, SIAM J. Matriz Anal. Appli. 21, 1-28, (1999).

Q.T. Jiang, On the regularity of matrix refinable functions, STAM J. Math. Anal. 29, 1157-1176, (1998).
C.K. Chui and J.A. Lian, A study of orthonormal multi-wavelets, Applied Numerical Mathematics 20, 273~
208, (1996).

C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73,
75-94, (1996).



