
An International Journal 

computers & 
mathematics 
with applications 

P E R G A M O N  Computers and Mathematics with Applications 40 (2000) 1153-1169 
www.elsevier.nl/locate/camwa 

Orthogonal Multiwavelets of Multiplicity Four 

DON HONG 
Department  of Mathematics,  East  Tennessee State University 

Johnson City, TN 37614-0663, U.S.A. 
hong©et su.  edu 

AI-DI W u  
Department  of Mathematics,  University of Petroleum, China 

Dongying, Shandong 257062, P.R. China 
wuaidi©dns, hdpu. edu. cn 

(Received May 1999; revised and accepted May 2000) 

A b s t r a c t - - W e  consider solutions of a system of refinement equations with a 4 × 1 function vector 
and three nonzero 4 × 4 coefficient matrices. We give explicit expressions of coefficient matrices 
such that the refinement function vector and the corresponding wavelet vector have properties of 
short support [0, 2], symmetry or antisymmetry, and orthogonality. The properties of convergence of 
the subdivision scheme, approximation order, and smoothness of the refinement functions are also 
discussed. (~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Wavele t  t heo ry  is based  on the  idea  of  mul t i r eso lu t ion  analys is  (MRA) .  Usually,  an M R A  is gen- 

e r a t e d  by  one scal ing funct ion.  However,  such wavelets  canno t  possess t he  p rope r t i e s  of shor t  

s u p p o r t ,  s y m m e t r y  or an t i symmet ry ,  and  o r thogona l i t y  s imul taneously .  T h e  s t u d y  of mul t i -  

wavele ts  was i n i t i a t ed  by  G o o d m a n ,  Lee and  Tang  in [1]. Then  G o o d m a n  and  Lee in [2] gave 

a c h a r a c t e r i z a t i o n  of  scal ing funct ions  and  wavelets.  Mul t iwavele t s  open  new poss ib i l i t ies  in t he  

cons t ruc t i on  of wavelets  wi th  those  p rope r t i e s  based  on mul t i sca l ing  funct ions.  Mul t iwave le t s  

have more  f reedom in the i r  cons t ruc t ion .  Therefore ,  t hey  can have shor te r  s u p p o r t  w i th  more  

van ish ing  m o m e n t s  t h a n  a single wavelet ,  and  t hey  m a y  have o r t hogona l i t y  and  s y m m e t r y  a t  t he  

s ame  t ime.  These  p rope r t i e s  are  very  des i rable  in m a n y  appl ica t ions .  Thus ,  mul t iwave le t s  can  be  

ve ry  useful for var ious  p rac t i ca l  p rob lems  (see [3,4], for examples) .  T h e  l i t e r a tu re  on th is  sub jec t  

is growing r ap id ly  (see [5] and  the  references there in) .  In  th is  paper ,  we consider  so lu t ions  of a 

The authors are very grateful to the anonymous referees for their valuable comments and suggestions. They also 
would like to thank L. Guan and P. Xiao for their valuable discussions during the revision of the paper and for 
the numerical computation about the joint spectral radius. The research was supported in part by an RDC grant 
of ETSU under Grant ~00-007/m. 

0898-1221/00/$ - see front matter (~) 2000 Elsevier Science Ltd. All rights reserved. Typeset by ,4Az~S-TFjX 
PII: S0898-1221 (00) 00229-7 



1154 D. HONG AND A.-D. Wu 

system of refinement (scaling) equations in the form 

2 

¢(x)  = hk¢ (2x - k) ,  
k=0 

where ¢ is a 4 x 1 vector function, and h0, hi, and h2 are 4 x 4 matrices (the sequence (hk) 
of matrices is called a refinement mask). We give explicit expressions of hk, k = O, 1, 2 such 
that  the refinement (scaling) function vector ¢ has properties of short support [0, 2], symmetry 
or antisymmetry and orthogonality. The multiwavelets with the same properties as the scaling 
functions are also constructed. The paper is organized as follows. In the remainder of this 
section, we recall some results on multiwavelets construction. In Section 2, we construct a scaling 
function vector with multiplicity 4 such that  it has support on [0, 2], symmetry or antisymmetry, 
and orthogonality. The multiwavelets with the same properties as the scaling functions are 
constructed in Section 3. We discuss the properties of approximation order and analyze the 
smoothness of the refinement functions in the final section. 

In general, we are concerned with the system of refinement equations 

N 
¢(X) = Z hk¢ (2x -- k) ,  (1.1) 

k=0 

where h k i s  an r x r matrix, and ¢ = ( ¢ 1 , ¢ 2 , . . . , ¢ r )  T is a vector of functions. 
transform of the above refinement equation is 

where 

We denote 

N 
1 

H = h k e - %  
k=0 

The Fourier 

1 N 
M = H(O) = -~ Z hk. (1.2) 

k=O 

In the Fourier domain, L2-stability of ¢ is ensured if and only if the sequences {¢k (w + 2~rt)}tez, 
k = 1 , . . . ,  r are linearly independent for each w E N (see [6]). 

If ¢1 , . . - ,  Cr are functions in L 1 (]~) with stable shifts, it was proved by Dahmen and Micchelli 
in [7] that  the matrix M has a simple eigenvalue 1 and all other eigenvalues of M are less than 1 
in modulus. Therefore, we may assume that  the r × r matrix M has the following form: 

M = ( ~  A )  and ~-~oolim A ~ = 0 "  (1.3) 

Under assumption (1.3), it was proved by Hell and Colella in [8] that  there exists a unique 
vector ¢ of compactly supported distributions such that  ¢ satisfies the refinement equation (1.1) 
and ¢(0) = ( 1 , 0 , . . . , 0 )  T. Such a solution is called a normalized solution. If ¢ is another 
distribution solution, then we must have ¢ = C¢ for some constant C. 

Let 
N 

Q f  = ~ h k f  (2 . - k ) ,  f e LP(R). 
k=O 

Then Q is a linear operator on (LP(N)) T (1 < p < e~). If f is an r x 1 initial vector of compactly 
supported functions in LP(R) such that  Qnf  converges to the normalized solution ¢ of (1.1) in 
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the LP-norm (1 ~ p _< oc), then the subdivision scheme associated with the mask (ha} is said to 
be convergent in the LP-rmrm. 

If the subdivision scheme associated with the mask {ha} converges in the LP-norm for some p 
(1 <_ p < co), it was proved in [9] that  {ha} satisfies 

4 E : 4 E h2a+l : e:, (1.4) 

where el is the first column of the r x r identity matrix I~. 

In [10,11], the smoothness conditions of refinement functions were discussed. The method 
presented in [10] is to connect the optimal smoothness ~(¢) to the p-norm joint spectral radius 
of the block matrices Ac, e = 0, 1, given by A~ = (ha+2a-/3)a,~ over a certain finite-dimensional 
common invariant subspace. When p = 2, the optimal smoothness is also given in terms of the 
spectral radius of the transition matrix associated with the refinement mask. 

We call a sequence of closed subspaces {Vj}jez of L2(•) an orthogonal multiresolution analy- 
sis (OMRA) of multiplicity r if the following conditions are satisfied. 

(a) Vj C Vj+I,  j E Z. 

(b) U ~ ° = _ o o V j  = L2(R), nj%_ooVj = {0}. 
(c) There exists a vector ¢ of functions in L2(]R) such that  {2J/2¢a(2 j • -g);  k = 1 , 2 , . . . ,  r, 

e • Z} forms an orthonormal basis of Vj. 

A function vector ¢ that  generates an OMRA with multiplicity r > 1 is called an orthogonal 
multiscaling vector. If ¢ is an orthogonal multiscaling vector, then 

H (~) H* (~) + H (~ + ~) H* (~ + 7r) = I~, 

or equivalently, 

E hkha+2m = 25m,oL, m E Z. (1.5) 
k 

Let Wj be the orthogonal complements of Vj in Vj+I. If there is a function vector ~b = 
(¢1 , . . . ,~G)  T such that  {¢~(. - [); v = 1 , 2 , . . . , r ,  e E Z} forms an orthonormal basis of W0, 
then we call functions ~bl, . . . ,  ~br orthonormal multiwavelets. Then ~ can be expressed as 

¢ = Z ga¢ (2. -k) 
k 

and {gk} satisfies the following equations: 

E hkgk+2m = O, m E Z, (1.6) 
k 

Egkgk+~m = 26m,0I~, m E Z. (1.7) 
k 

2. M U L T I S C A L I N G  F U N C T I O N S  

Let ¢ be the normalized solution of (1.1). Then ¢ has support [0, N]. If ¢~ is centrally 
symmetric on the support [0, N] for any even number i and centrally antisymmetric on [0, N] for 
any odd number i, then 

¢(x) = Sdp(N - x), (2.1) 
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where 

S __ 

- I  

1 

- i  

(-1) ~+1 

Using this in the refinement equation (1.1), we obtain 

r X r  

¢ = S ¢ ( N - . )  = E S h k ¢ ( 2 N -  2 . - k )  
k 

= E S h k S ¢ ( 2 "  + k -  N)  = E S h N - k S ¢ ( 2 "  - k ) .  
k 

Thus, ¢ will have the desired symmetric property provided that 

S h N - k S  ---- hk, k E Z. (2.2) 

We hope to find scaling functions with properties of short support, symmetry, and orthogonality. 
In [12], orthogonal multiscaling functions with multiplicity 2 and support [0, 2] (i.e., r = 2 and 
N = 2) were constructed. However, the fact that the multiscaling functions ¢1 and ¢2 are in 
L2(R) with orthogonal shifts were not verified in the paper. Jia, Riemenschneider and Zhou gave 
the verification in [9] and constructed an entire family of orthogonal double multiwavelets that 
are continuous and have symmetry. In this paper, we consider the case of r = 4 and N = 2. 

From (1.3), we have (10) 
ho + hl + h2 = 2 0 A ' 

where A is a 3 × 3 matrix and all its eigenvalues are less than 1 in modulus. By (1.4), we need 

eT(h0 + h2) = e~hl = e~. (2.4) 

Combining (2.2)-(2.4), we obtain that 

h0 

i tl 0 t3 / 

h22 h23 h24 : :  

h32 h33 h34 J 
k r3 h42 h43 h44] 

h 1 (i °° 
d2 0 

0 d3 
v 0 d4 

:) 
r 

and 

h2 = ShoS. 

From (1.5), we have 

hobo ~ + ~ h ~  + h~h~ = 2X., 

hoh T2 = O. 

(2.5) 

(2.6) 
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Let S = ( - t  

h2 = S h o S  = 2 = ~ - t  . 

S r  S h S  - r  S h S  

Then (2.6) implies 

1 t t  T O, 
4 

- - { r  T 'Jr" t S h T S  = 0, 

1 
- r  - ht T = O, 
2 

- r r  T + h S h T S  = O. 

(2.7) 

Noticing that  tS  -- - t ,  S r  -- - r ,  we find that  the second and the third equations are equivalent 

in (2.7), and thus, 
1 

t~ + t~ = ~. 

1 
h22tl + h24t3 = ~r l ,  

h32tl + h34t3 = 0, (2.8) 

1 
h42t1 + h44t3 = : r3 ,  z 

and 

h22h32 -- h23h33 4- h24h34 ---- 0, 

h22h42 - h23h43 + h24h44 = rlr3,  

his - hi3 + h h  = 0, 

h32h42 - h33h43 + h34h44 = 0, 

hh - hh  + hh  = ,'~. 
Now let us consider equation (2.5). Suppose hi is a diagonal matrix. Then 

(2.9) 

hobo ~ + h2h;  = hobo ~ + Sh0h0 ~ s  = 214 - h ,h~  

is again a diagonal matrix. Noticing that  the matrix hohTo + ShohTo S has the form of 

0 0 0 

0 * 

• 0 

we obtain a diagonal matrix by setting the (2, 4) entry to zero. This implies 

rlr3 + h22h42 + h23h43 + h24h44 = O. (2.10) 

Together with the third equation of (2.9), we have 

h22h42 4- h24h44 -- 0, 

f i r3  + h23h43 -- 0. 
(2.11) 
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Solving this set of equations,  we have 

h23 = r if t ,  h43 - r3 f '  

h44 
h22 = a h 2 4 ,  h42 --  , 

(2.12) 

where/3 ,  a are constant .  If we choose t3 = a t l ,  then  (1 + a2) t l  2 = 1/4. From (2.8), we have 

1 r l  r3 _ ar3 
h24 - 2 tÀ (a  + a ) '  h32 = - a h 3 4 ,  and h44 - 2tl (a  - 1 /a)  2tl ( a s  - 1)" 

From the fourth equat ion of (2.9), we have 

h23 = (0~ 2 + 1) h24 = ~ ,  

or equivalently, h33 = h34/2t]. By solving other  equations of (2.9), we obtain 

1 - a a  
. f  - -  _ _  

Finally, h] can be de termined by using the equation h l h ~  = 214 - hoh~ - ShohXo S. Therefore,  
we have the following. 

THEOREM 2.1. Suppose  that  f and a + a  are nonzero and f = ( 1 - a a ) / ( a + a ) ,  ( a 2 +  1)t 2 = 1/4. 
Let  

h 0 

0 a t  
1 

ar l  
rl 2t (a + a)  

0 --O~r2 

r3  

~,r3 2t(a +a)f  

d2 

d3 ' 

d4 

for 

rift 

r2 

2t 
r3 

f 

r l  

2t (a  + a)  

r2 

a r 3  

2t (a + f 

(2.13) 

hi  = and h2 = ShoS ,  (2.14) 

d~ = 2 - 4 ( f  2 + 1) r~, d 2 = 2 -  r22 and d~ = 2 - 4 ( f  -2 + 1) r3. 
t 2 

Then h0, hi ,  h2 sat isfy the orthogonal conditions (2.5) and (2.6). 

REMARK. If f = 0 or a + a = 0, there  also exist solutions for (2.5) and (2.6). For example,  if 
fl -- 0, we can follow a similar procedure as above and find a solution as follows. 

1 
t 

rl  2trl 

0 - a r 2  

0 -- o~r 3 

0 a t  

0 2 tar l  

r2 
r2 

r3 
ra 

h 0 --  

hi = diag (1, d2, d3, d4),  and h2 = ShoS,  
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O r t h o g o n a l  Mul t iwave le t s  
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Figure  1. T w o  of  t h e  four mul t i sca l ing  funct ions .  

f o r  

d~ = 2 -  4r~, d~ = 2 -  r J  and d~ = 2 -  r-]32 
t2,  t2 • 

Figures 1 and 2 show a set of multiscaling functions for a choice of free parameters .  It  is clear 
t ha t  the  multiscaling functions are orthogonal ,  ei ther symmetr ic  or ant isymmetr ic ,  and having 
suppor t  on [0, 2]. 
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multiscale function 3 
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0.8 1 1.2 14. 1.6 1.8 

x 10 -3 
1.5 

multiscale function 4 
i i i i ~ i i i 

0.5 

-0.5 

-1 

l I I 18 -~% 0.~ 0., 0'.6 0:8 , 1'.~ ~:, ,i~ , 
Figure 2. Two of the four multiscaling functions. 

The  following result (see [9, Theorem 8.1]) gives a necessary and sufficient condit ion tha t  the  
sys tem of scaling functions and their shifts becomes an or thonormal  sys tem in L 2 (]~). 

THEOREM 2.2. The set of  scaling functions ¢ 1 , - - . ,  ~4 and their shifts becomes an orthonormal 
sys tem in L2(IR) i f  and only i f  
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(i) the discrete orthogonal conditions in (2.5) and (2.6) are satisfied for the mask (hk), k = 

0, 1, 2, and 
(ii) the corresponding subdivision scheme converges in the L2-norm. 

Therefore, we'd like to check the convergence of the corresponding subdivision scheme associ- 
ated with the mask (hk}, k = 0, 1, 2 constructed above. This can be done by using the following 
result corresponding to Theorem 7.1 in [9]. 

{h. A 4,4 {d" .~4,4 THEOREM 2.3. Let  ho = t'o~3j~,j=l, hi  -- ~ ~J/i,j=l, and 

h2 -- 

(i o o !//hi1 h12 h13 bin 
- 1  0 | h21  h22 h2a h24 
0 1 / h a l  h32 h33 h34 

0 0 1 \h41  h42 h43 h44 

( o0 
- 1  0 0 
0 1 0 ' 
0 0 - 1  

Then  the subdivision scheme associated with the mask ( hk }, k = 0, 1, 2 converges in the L 2-norm 
if  and only  i f  the following conditions are satisfied. 

( i )  h21 = h31 = h41 = 0, 
(ii) d32 = d42 = ha2 = h42 = 0 or d23 = d24 = h23 = h24 = 0, 

(iii) d43 -- h43 = 0 or da4 = h34 = 0, and 
% % 

(B~, Pi P2 Ci ) 
for i ---- 2, 3, 4, then Pi < v ~  for i = 2, 3, 4. 

3.  M U L T I W A V E L E T S  F U N C T I O N S  

Let h0, hi ,  and h2 be 4 x 4 matrices which satisfy the orthogonal conditions (2.5) and (2.6), 
and 

2 

¢(x) = E h k ¢ ( 2 x -  k).  
k=O 

Suppose ¢ generates an MORA and ¢ is the corresponding orthogonal multiwavelet vector of the 
form 

Then go, 91, and g2 must satisfy 

2 

~(x )  = E g k ¢  (2x - k ) .  (3.1) 
k=O 

gog; + g l~;  + g2g; = 2I, 

goh~o + g,h~l + g2h; = O. 

gog~ = O, 
(3.2) 

goh-~ = O. 

Suppose that  So, S1, and $2 are diagonal matrices and gi = S~h~ for  i = 0 ,  1,  2.  Then we have 

gog T2 = Sohoh~ $2 = 0 

and 

goh~ = S o h o h ;  = o. 

In order to ensure that  the multiwavelet functions are symmetric, we need So = $2. This gives 

g2 = $2h2 = S o S h o S  = S S o h o S  = SgoS. 

By (2.5), we have 

hobo ~ + h ~ h ;  = 2I  - h ~ £ .  
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Substituting into (3.2), we obtain 

S, hlhT1 S,  = 2 I -  $2 ( 2 1 -  hlh~)  $2, 

S l h l h  T = -$2  (2I - h , h T ) .  (3.3) 

Solving for $1 from the second equation of (3.3), we have 

St = -$2  (21 - hi hT) (hlhT1)-1. (3.4) 

Then solving for $22 from the first equation of (3.3), we obtain that  

S 2 = (hlhl  T) (2•-hlhlT)  -1 (3.5) 

Hence, we obtain the following. 

T H E O R E M  3.1. Suppose hi, i = 0, 1,2 satisfy (2.5) and (2.6) and h lh  T, 2 1 -  h th  T1 are invertible 
diagonal matrices. Let gi = Sihi for i = 0, 1, 2 and S 2 and $1 satisfy (3.5) and (3.4), respectively. 
Then gi, i = O, 1, 2 satisfy (3.2) and (3.3). 

For hi, i = 0, 1, 2 described in Theorem 2.1, we have 

s~= (1 
= / 1  

Thus, 

)/1 d~ 2 - d~ 

d~ 
2 - d2 2 

4 
2 - d 2 

4 
2 - d4 2 

:/1 
1 

d2 

2 r l V ~  + 1 

$2  -~- 

Then, we have 

S 1 ~-- - 8 2  ( 2 1  - hi hT) ( h l h l T )  - 1  = - $ 2  

1 
2 r l X / ~ + l  

d2 

d3t 
r2 

-1 

2 - d~ 

r2 
d3t 

2ra ~ X / ' ~ +  1 
d4 

d~ 
4 (~2 + 1) r~ 

d~t 2 
r~ 

d4 / 
2r3v/f1-2 + 1 

/1 
2 - d~ 

d~ 
2 - d~ 

d~ 

d~ 
4(fl-2 + 1)r3 2 

2 - d4 2 
d~ 
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multiwavelet function 1 
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multiwavelet function 2 

I I I 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Figure 3. Two of the four multiwavelet functions. 

The following result [1, Theorem 8.2] gives a characterization on {gk}, k = 0, 1, 2 for the 
orthonormali ty of the shifts of ¢ 1 , . . . ,  ~4. 

2 THEOREM 3.2. Let <hk), k = O, 1,2 be chosen such that the matr ix  M = Y~k=O hk/2 satis- 
fies (1.3), and let ¢ = (¢1 , . - . ,  ¢4) T be the normalized solution of the refinement equation 

2 

¢ = ~ hk¢(2. -k),  
k=O 
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multiwavelet function 3 
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1.5 

mulUwavelet function 4 
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Figure 4. Two of the four multiwavelet functions. 

for which {¢j ( .  - k); j = 1 . . . . .  4, k = 0 ,1 ,2}  forms an  orthonormal system in L2(R) .  Let 
¢ = ( ¢ 1 , . - - ,  ¢4) be the vector given by (3.1). Then ¢ becomes a vector of multiwavelets if  and 
only i f  condition (3.2) is satisfied. 

Figures  3 and  4 show the  mul t iwavele t s  by  a choice of  a set  of  pa rame te r s .  
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4. A P P R O X I M A T I O N  O R D E R  O F  R E F I N E M E N T  F U N C T I O N S  

A character iza t ion  of approximat ion  order of nmltiscaling (refinement) vectors  using symbol  
and mask was given as follows in [13]. 

PROPOSITION 4.1. Assume that 0 is an integrable solution of  the matr ix  refinement equa- 

tion (1 .1)such that the integer  translates of 4)1, 4)2 . . . .  ,4)~ are linearly independent. Then 4) 

ho~s approximation order p i f  and only i f  there are p vectors Uo, U1,. • •, Up_ 1 satisfying the fol- 

lowing equations: 

~. ,,,=o \ m )  o (4.1) 

and 

E v(J)r  2 - J u j ,  I k t t 2k  = (4.2) 

for j = O,1, . . . , p - 1 .  Here 

In this case, we have 

Y}J) = ~-~. ( J ) (-e)J-'~u,n. 
rn~O 

(4.3) 

tJ = + k).  
k 

In the  s i tuat ion discussed in the previous two sections, the proposi t ion can be rewri t ten  as the  
following. 

THEOREM 4.2. Let 

1 :2 tl  0 t 3 / '  1 

ho = rl h ' )2  h23 h24 , hi = I d2 
0 ha2 h33 h34 d3 ' 
r3 h42 h43 h44 d4 

and h2 = ShoS  for S = diag(1, - 1 ,  1, - 1 )  and d3 = 1/4. Then the corresponding multiscaling 
vector O has approximation order three i f  and only i f  one of the following conditions are satisfied. 

(1) d2 = 1/2,  t3(2h22 - 1/2) = 2h24tl, 4rlt3 = h24. 

(2) d4 = 1/2, tl(2h44 - 1/2) = 2h42t3, 4r3tl  = h42. 
t l )  = 1/8. (3) d2 = d 4  = 1/2, ( r ~ r 2 ) A  -1 t2 

Here, 
/ 

2h22 
A = 

i 

\ 2h24 

is invertible. 

1 2h42 ) 
2 

1 
2h4,1 - 

PROOF. We derive only the first condition. Condit ions (2) and (3) can be derived similarly. In 
the case we are discussing, equat ions (4.1) and (4.2) become 

Uohl = Uo and Uo(h2 + h0) = U0, 

for j = 0 and the solution is 
Uo=(ao,0,0,0) T, (4.4) 

for some ao E N. 
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If j = 1, then the corresponding equations are 

1 
Ulhl -- -~ (Uo + U1),  

IU  (4.5) 
Ulho + (U1 - U0) h2 = ~ 1. 

Let U1 = ( uu u12 ~3 ~14 )T. Then from the first equation of (4.5), we have 

u n = a o  and (d~ - ~/Ul~ = 0, for i = 2,3,4. (4.6) 

By using the second equation of (4.5), we have 

( 2 h 2 2 - ~ ) u 1 2 + 2 h 4 2 u 1 4 z - a o t l ,  

: 
Combining (4.6) and the second equation of (4.7), we obtain 

{ 1 1 
U13 ~- 0, d3 ¢ ~ or h33 ¢ ~,  

an arbitrary number, otherwise. 

Clearly, u~2 + u~4 ~ 0, since t 2 + t 2 ¢ 0. We divide the discussion into the following three 
cases. 

CASE 1. If u12 ¢ 0 but ul4 = O, then by (4.6) and (4.7), we have 

1 ( 1 )  
d2 = 2' t3 2h22 - = 2h24tl, 

and 
aot3 

z - -  

u12 2h24 

CASE 2. If u12 = 0 but u14 ~ 0, then from (4.6) and (4.7) again, we obtain 

( 1 )  
d2 = 4 2' tl  2h44 2h42t3, 

and 
aotl 

U14 : -- 2h42" 

CASE 3. If U12 7 ~ 0 and u14 ~ 0, then equations in (4.6) and (4.7) imply that  

1 1 
d2 = ~, d4 = ~, 

( 1 ) 
( U 1 2 ~  = 2h22 -~ 2h42 _aOtl " 

1 -aot3 
\ U14 ] \ 2h24 2h44 - 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

Now, let us consider the vector U2. In this case (j -- 2), equations (4.4) and (4.5) become 

1 
U2hl = ~ (U0 + 2U1 + U2) (4.13) 
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and 

1 
U2ho + (Uo - 2U1 + U2) h2 = ~U2. (4.14) 

Denote [/2 = (u2~ u22 u23 ~24 )7-. Then (4.13) implies that  

( 1 )  1 
u12 = a0 and d~ - u2~ = ~uu ,  for i = 2, 3, 4. (4.15) 

Consequently, 

U22 : 2U12, U24 ~- 2U14. (4.16) 

Equation (4.14) can be rewritten as 

U2 (ho + h2 - 1 I )  = (2U1- Uo) h2. 

That  is, 

3 1 _ 2rlu(1 ) _ 2/.3U(41), ~a0 = ~a0 

( 2 h 2 2 - 1 )  2u12~-4h42u14 :-aotlq-2h22u12q-2h42~z14-2h32u13, 
(4.17) 

(2h33 - 1 )  u23 = -2h23u12 + 2h33u13 - 2h43u14, 

4h24u12 q- (2h44 - 1 )  2u14 -~ -aot3 q- 2h24u12 + 2h44u14 - 2h34u13 . 

If u13 = 0, then from (4.7), we see that  the second and the fourth equations are satisfied. 
By (4.15), we have d3 = 1/4. 

u23 can be determined by the third equation of (4.17). Therefore, as long as the first equation 
is satisfied, the vector U2 will satisfy equations (4.13) and (4.14). For this purpose, we repeat 
the discussion of the three cases again. Since the discussions are similar, we provide only the 
discussion of Case 1. In this case, equations (4.9) and (4.17) yield that  

4tit3 ---- h24. 

Therefore, if one of the Conditions (1)-(3) is satisfied, then there are vectors U0, U1, and [/2 satis- 
fying (4.1) and (4.2). Therefore, ¢ has approximation order of three according to Proposition 4.1. 
On the other hand, if the vectors U0, [/1, and [/2 satisfy (4.5), (4.13), and (4.14), then hi must 
satisfy the first equation of (4.17) and so satisfy one of Conditions (1)-(3). This completes the 
proof. | 

As to the approximation order of the multiscaling functions we considered in the Section 2, we 
have the following. 

THEOREM 4.3. Let hi, i -- 0, 1, 2 be determined as in Theorem 2.1 and ¢ be the corresponding 
scaling vector of functions. Then ¢ has approximation order of only two. 

PROOF. Clearly, the approximation order of ¢ is at least two from Proposition 4.1 and the proof 
of Theorem 4.2. In the following, we apply Theorem 4.2 to show th a t  the approximation order 
of ¢ cannot he three. For this purpose, we need to check that  none of the three conditions in 
Theorem 4.2 is satisfied. We check 0nly Condition (1) here. The fact that  ¢ does not satisfy the 
other two conditions can be similarly verified. 
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Clearly, Condition (1) in Theorem 4.2 can be rewritten as 

1 
2 - 4 ( / 3  2 + 1 )  rl  2 : ~ ,  

c~ 
6~h22 -- h24 = 7 '  

h24 = 4arlt. 

(4.18) 

Noticing that  h24 = rl/2t(r + a), h22 = arl/2t(cr + a),  we have 

7 
r~ (/32 + 1) = ~-~, 

/3r l  o~ 

t 2 '  

1 _ 4c~t2. 
2 (~ + ~) 

(4.19) 

Combining the third equation of (4.19) with 4t 2 = 1 / (a  2 + 1), we have 

a 2 - 1 
O ' - -  

2c~ 

Substituting it into /3 = (1 - aa)/(a + c~), we obtain that  /3 = a. Together with the second 
equation of (4.19), we have rl = - t /2 ,  and thus, 

1 
(/32 + 1 ) r l  2 = ~-~. 

This contradicts with the first equation of (4.19). | 

In [10], a characterization of smoothness of the refinement functions is given in terms of the 
corresponding refinement mask. The authors there use the generalized Lipschitz space to measure 
smoothness of a given function. As usual, the difference operator Vy for function f and y E R is 
defined by V y f  = f ( . )  - f ( .  - y), and the modulus of continuity of f in LP(R) (1 < p _< oo) is 
defined by 

w(f,t)p = supM_< t [[Vyf[[p, t _> 0. 

For a positive integer k, the k th modulus of smoothness of f E LP(tR) is defined by 

wk(f,t)p : supM< , ][vkfHp, t > 0. 

Let v > 0. The generalized Lipschitz space Lip*(v, LP(IR)) is the collection of those functions 
f E LP(R) for which 

wk( f , t ) p<Ct  ~, Y t > 0  and for some k > v ,  

where C is a positive constant independent of t. 
By (Lip*(v, LP(R))) ~, we denote the linear space of all vectors f = ( f l , . . . ,  f~)q- such that 

f l , . . . ,  f~ C Lip*(v, LP(•)). The optimal smoothness of a vector f e (LP(R)) ~ in the LP-norm is 
described by its critical exponent Vp(f) defined by 

Vp(f) := sup{v; f e (Lip* (v, LP (•)))r}. 

For the refinement functions constructed in Section 2, we followed the iteration steps described 
in [10] and obtained that  v2(¢) _> 1/2 - log s a ~ 0.01462, where the mask a(k) = hk for k = 0, 1, 
and 2. 
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