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Abstract. This paper is concerned with a study of some new formulations of
smoothness conditions and conformality conditions for multivariate splines
in terms of B-net representation. In the bivariate setting, a group of new
parameters of bivariate quartic and quintic polynomials over a planar sim-
plex is introduced, new formulations of smoothness conditions of bivariate
quarticC* splines and quinti€? splines are given, and the conformality
conditions of bivariate quarti€* splines are simplified.

1 Introduction

The Bernstein—Bézier method (B-form, B-net) plays an important role in
the study of both curve fitting and multivariate spline approximation. The
B-net was initiated from Bernstein polynomials. In the late fifties and the
early sixties, de Casteljau and Bézier applied Bernstein polynomials in the
study of curve fitting by using triangular patches and rectangular patches. In
1980, Farin [1] first used the B-net method in the study of bivariate splines.
More details about the Bernstein—Bézier patches can be found in [2,3].
The B-net is widely applied in the study of either the dimension and
basis or the approximation property of multivariate spline spaces (see [4]-
[9] for example). Some applications of the B-net method in the study of
multivariate splines can be found in [10]. In this paper, we study formula-
tions of smoothness conditions of multivariate splines determined by some
interpolation conditions at the vertices and some B-net domain points. In
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particular, we give a simplified formulation of smoothness conditions for

bivariate quartic and quintic splines and simplified conformality conditions

for bivariate quartic splines. The paper is organized as follows. In Sect. 2,
we give a brief review of the B-net representation of spline functions and
recall some formulations of smoothness conditions for multivariate splines.
In Sect. 3, we discuss smoothness conditions for bivadatguartic and

C? quintic splines. Conformality conditions for bivariate quaditsplines

are discussed in Sect. 4.

2 B-net representation of multivariate splines

As usual, leR be the set of all real numbers add the set of nonnegative
integers. ThuRR" denotes:-dimensional Euclidean space ai can be

used as a multi-index set, whitg := 7, (R") is the space of all polynomials
of (total) degree< k in n variables. Let§ = [vg, vy, ..., v,] be a proper

n-dimensional simplex with verticesy, vy, ..., v, € R". Then for any

x € R", we have

x=&vo+&vi+---+E&v, with SE+&6+---+&, =1

The (n + D)-tupleé = (&, &1, .. ., &,) defines the barycentric coordinates
of x with respect to the simplex. Fora = (ag, o1, ..., ) € Z”jl, the
length of« is defined byla| = ag + a1 + - - - + «,,, and the factoriad! is
defined as! ... «a,!. We define the Bernstein polynomiB), ; as

Bus(x) = ('z')s“,

where&® := 5% ... €% and

loe[\ Joc|!
a ) aglaq!...a,!

In addition, the domain points, ; oné are defined by

. (aovo + a1vg + - - - + @, V)
o, = 9
' k

Itis well-known that any polynomigh € ; can be written in a unique way

as
P = Z ba,SBot,Sv
|o|=k

whereb, s is called the B-net ordinate gf with respect tos. This gives

rise to a map : x,5 > by, lo| = k. Such a ma is called the B-net
representation op with respect ta.

| = k.
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Let A be a triangulation of a polygonal domain Ri" and S; (A) the
linear space of piecewise polynomial functions (splines) with total degree
< k and smoothness ordeon A. Assume € S)(A). Then on each simplex
8 € A, s agrees with some polynomial € 7;. Thus, we have

sls = E ba,5Bgs.
la|=k

Let X denote the set of all (domain) poinig;. Then a map can be defined
as follows:
by P Xgs > ba,é’ |Ol| =k,0 € A.

Such a map; is called the B-net representation of the spline function

Lets = [vo, v1, ..., v,] ands = [vo, v1, . .., U,] be twon-dimensional
simplices witha commo —1)-dimensional facgvo, vy, . . ., v,_1]and de-
nOtevl = (Ull? UzZ, AR Uin), l = 09 17 A} nl andi}l’l = (ﬁl‘llv f)n27 AR 51’!}1)'

Then the oriented volume of the simplé&is

1 Vo1 Vo2 ... VUon

1 11)111)12...1)1”
V:=VO|[v0,v1,...,vn]=; L . QD

lv v ... vy

If we setv; = v,,, then we will denote the oriented volume of the simplex
[vo, V1, ..., Vi, ..., U] DY

1 Vo1 ... Vo
1 1 Vi—11 ... Vi—1p
Vi::Vol[vo,vl,...,vi,...,vn]=n— 10,1 ... U |. (2)
1vigar ... Vi

1 vy ... U
The following result, which describeS”-smoothness conditions on a

spline functions in terms of its B-net representation, is from [11] (see also
[12,13)).

Theorem 1 Suppose that the piecewise polynomial functigdefined on

s§US by
sls = E basBy s,
|| =k

sls = bysBys-

lo|=k
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Thens e C7(8 U §) if and only if, for all positive integerg¢ < r and

a = (a0, a1, ..., 0,_1,0) € Z" " with |o| = k — ¢,
¢ /S
ba_,_gewrl_g = /SX:Z <ﬁ>ba+ﬂ,STa (3)

whereg = (8o, 1. ..., B,) ande*! = (0,...,0,1) are inZ"*.

For the purpose of studying stability of the space of bivariate splines with
smoothness orderand total degrek > 3r + 2, the following new formula-
tion of smoothness conditionsis derivedin [14]. ket (a1, ..., a,) € Z'}.

We use standard multi-index notations. We say that « if and only if
Vi <a;fori=1...,n Fora,y € Z’, withy <o, we have

EY =gt 80,
! =a1!...a,l,
(@ —y)=(ar—yD!...(y — ya)!

and
() =G ()=
v)  \n) T \w)  @—miyl
Let
Cas =y _(=1)*7! (“)b(xy,a),
y<a Y
where
o k—a1—--—apvo+arv1 +--- + v,
a8 — .
’ k

We have the following formulation of smoothness conditions for multi-
variate spline functions [14].

Theorem 2 A spline function € C°(8 U §) is of smoothness orderif and
only if the corresponding term&, s} and{C, ;} satisfy the condition:

Oln! V]_yl . VV1111 Vﬂ%z_|V7|
Coz~: Cot ——ly~len,s i
’ y% B (D Ve
(4)
forl<a, <r,a,y € Z" with|a| =k, wherey™ := (y1,..., -1, 0) €

z".

An application of this smoothness formulation can be found in [6].
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3 Smoothness conditions of quartic and quintic splines

In this section and the next, we restrict ourselves to the two-dimensional
setting. Lets; = [vg, v1, v2] be a planar non-degenerate simplex with ver-
ticesv; = (x;, yi) € R?, i =0, 1, 2. Leté = (&, &1, &) be the barycentric
coordinates ok € R? with respect to the simples. Set

Ai =Y — Vi

pi = —(x; — xp),

Vi (= XYk — VjXk,
with (i, j, k) a cycling of the subscripts in cyclic order8 1 — 2 — 0.
Clearly, the following equalities hold:

M+ri+2r=0
Mo+ p1+pu2 =0 (5)
vo+v1+v2=0.

Also the barycentric coordinates can be expressed as

éo 1 | Voo ko 1
&1 =@ | hus | X (6)
&2 vaho 2 | |y
where
1 xo0 yo
AD = 2 aredwy, vy, v2] = 1x y1
1xy

is the oriented area of the simpléxas given in (1).
For a bivariate polynomiagh with total degre& with B-net representation
b, ie.,

pP= Z bt(xl) Ba,(sl = Z btgzj(-))alaz BO‘,Sl’ (7)
o] =k |o|=k

we have the following
ap 9% 981 p
ax _ dx 0x d&o
op | T | % & p
dy dy 9y 081
d
1 [/\0 Al] 7
A | o pa ;—Q

k || Ao A1 Algbél) o0 o e
- Z m(a)[ﬂo ma | | Axgbd fo'b8n  (8)

lot|=k—1
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where
@ . D D
A13b0t = boto+1ot10tz - baoa1a2+1’
@ . D D
A23ba = baoal-i-lotz - baoalaz-i-l’
and
?p d50)2 (D812 %0 05 P2p
352 (3S ) (ag ) Zgéx ggx 3502
F] 012 12 380 961 92
ﬁ == ( 3)7 ) ( ) 2 6y 0y EUZ
52 &0 &0 ﬁ 061 0&p 9&1 + 081 & a2p
9xdy dx dy dx Jdy dx dy dx dy DE0IEL
5 ) 2p
1 (A0)* (A1) 2hoA1 9802
= —— | (r0)? (n)?  2popms 2p
(AD)2 912

Aoto Aip Agpi + Aifo a2p
080081
2 2
k(k _ 1) |Ot| ()&0)2 ()\1)2 2)\0)%
Z W (o) (1) 21op1 X
Moo Aipr Aop1 + Aijto

| —k—2
A13 A3 b

X | Doz DpgbP | E50671ES?. 9
A1z Az bV

Let f € C?(2). We consider the following interpolation problem on the
simplexd; = [vo, v1, v2]:
Find a quintic bivariate polynomial € zs such that

plvi =f|U,' = ﬁv l:07192
d ) .

2, =%, ==D.fi, i=012
d 0 .

Pl = f|v, =D, fi, i=0,12
92 . .
aggh}, = 3x2 |Ul = Dxxfis 1= Oa 1v 2

f’f’|v, _f’f|v,. Dy, fi,i =012

dxd) |U, = dxdv|vl = nyfi’ i = Oa 19 2

Substituting (7), (8) and (9) into (10), we obtain equivalent interpolation
conditions in terms of the B-net ordinat€ as follows:

(10)

@ (€]
fo= bSOO’ = boso’ fo= b005v

1 1

Dy fo= A(1> [ obSoo + A1biio+ )‘sz(lo)l] ;
1 1 1

Difi=—7 [Mbés)oJr haboas + kobiﬁo] :
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D, f > 7 AabSos + hoblg, + A1bs
xJ2 = A [*27005 0%104 Y0141 »
5 1 1
D, fo= 20 | Mobe(so)o + Mlbz(u)o + M2b401 )
3) 1 1]
Dy f1= m Mlb(50+ Mzb((m)l + ,uob§4)o >
5 &) ) @
Dyfa= A0 _M2b005 + 1obios + Habois|
D 2b( A2bS50 + 22D+ 2hohablny 4+ 201 Aob)
xxfO—C 500 T A10320 T AoD30p + 2A0A2 401+ 1 0410+
+ zxlebglfl ,
Dy fu = | Mibogo + A3b032 + *5b30 + 2hahobis + 2h2habisy +
.
+ 2hohabio |
D fo=c Azb(05+ A2bS0s 4+ A2b50s + 2hah1bss, + 2hohabln, +
+ lexobﬁg :
Dy, fo = c | u2bSos + n2b5 bY. + 2popab' s + 2p1pobs)
wl=¢ §60 + 13bS0 + 13bSen + 2uopablgy + 21 jtoblyy +
]
1 1
Dyfi=c bés)o + U3bog2 + Hgbsa0+ 21artobiag + 2uariibod; +
.
+ 2uouzb§3)l :
[ 1 1 1 1 1
Dy fo=c|n béo)5 + M(ZJbéo)s + Mlbt()z)s + 2M2Mlb(()1)4 + 2M0M2b§0)4 +
1]
Dyyfo=c Kouobégo + M/leélz)o + kzuzb%)z + (Aop2 + kz,uo)b%)ﬁ

+
nyfl =cC

—+

nyfZ =c

—+

(haito + Aopa)bisy + (hajts + xluz)bélfl

)»1M1bél5)o + kzuzb(%)z + )\-Oﬂobgé)o + (Arpo + )»o,le)bMO +

(Aop1 + )»1#2)1?&)1 + (Aop2 + )»2/10)17%)1

[ 1 1 1 1
)vzltzb(()())5 + )»ollob;o)g + )»1#119((,2)3 + (Aop1 + )\1M2)b(()1)4

(hoftz + A2po)bigs + (Aijto + hopa)bits

49
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with ¢ = 20/(A®)2. Then we can solve for some B-net ordinat€'$ of p
as follows:

@ _ @ _ @G _
bsoo— Jo, boso— f1, boos— f2,

1
bz(tll)o = fo+ = [m2Dx fo — 22Dy fo] »

5
bior = fo— % (11D, fo — 21Dy fo] ,
b = f1+ % [10D: f1 — %Dy f1] . (11)
biao=f1— % [12Dx f1 — }2Dy f1],
bios= f2 + % [11Dx fo — 21Dy f2] ,
bita= fo— % [110Dx f2 — oDy f2] ,

1
1 1 1
béo)z = _béo)o‘i‘ sz(lo)l + Z) [:“lixfO - 2)‘1:“1ny o+ )‘iDyny] ’

1
bSa0 = —bSoo+ 2b4io+ 20 [15Dxx fo — 202142 Dsy fo + 25Dy, fo] .
1) 1) 1) 1)
b3 = _bsoo + b0+ by
1
_E) [/’LIMZDxxfO - ()\ZI’Ll + AlMZ)nyfO + )\l)\ZDyny] s

1
bhao = —boso+ 210+ 55 [13Dw fr = Diap2Day f+ 15Dy fi]

1
1 1 1
b(()s)z = _b(()5)o + Zb((m)l + Z) [:“(Z)Dxx fi— 2)‘0:“0nyf1 + )‘(Z)Dyyfl] ’

@ Q1 Q) (@)
biz1 = —bgso+ boar + b1ag
1
~%0 [2m0Dyx f1 — (horz + Aaito) Dyy f1 + AohoDyy f1]

1
bélz)s = —b(()%);, + Zb((JJi)4 + 20 [M%Dxx f2 — 2hopoDyy f2 + A3D,, f2].

1
b%)3 = _b(()%))5+ 2b$4+ 20 [Mlix J2—2hapaDyy fo + )‘iDynyJ )
D D

1 1)
b113 = —bgos + bigat+ bora
1
20 [om1Dyx f2 — (Aato + hopt1) Dyy f2 + Aor1Dyy f2] -

We note that there are three B-net ordinaigg b57,andb\y, of p thatare

not given. In fact, they can not be uniquely determined by the interpolation
condition (9). It is easy to show that, if we add three additional interpolation
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Vo 55 5 5 A

Fig. 1. The free parameters @f € IT5 on a triangle

conditions as
p|Uz‘ = flv,- = f;, i= 3,4,5,

wherews, v4 andvs are internal points o8; with barycentric coordinates
(2,2, 1), (2L, %) and(%, 2, 2) respectively, themy,, by, andbyy, are
uniquely determined. However, we are not going to do so. For convenience
we will keep them undetermined at first so that the free parameters to any
polynomial p on a simplex can be chosen as the function values and all the
first and second derivative values at the three vertices as well as the three
B-net ordinateshsy,, by, andby, (see Fig. 1). In the following, we will
see that this group of new free parameters of quintic polynomials can be
used to simplify the smoothness conditions and conformality conditions of
bivariateC? quintic splines.

As shown in Fig. 2, le; = [vo, vy, v2] anddy = [vg, v, v3] be two
adjacent triangles with a common edge, v1] wherev; = (x;, y;),i =
0, 1, 2, 3. For convenience, let® denote the area of the triangleand

Agl) = aredus, vy, v2],
AP = areduy, vs, va,

A(Zl) := areduvg, vq, v3].

CIearAél) = A®@. Suppose that the piecewise quintic polynomial function
F(x, y) is defined or$; U 8, by

Flsy:=f =Y bPBus,

loe|=5
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Fig. 2. B-net of a quintic spline 0d1 U 52

F|52 =g = Z béz)Ba’(gz.
la|=5
Let 8 = g(vi)l i = 09 1’ 21 ngi = g_§|vi, Dygi = g_ilvi! Dxxgi =
2 2 2 )
841y, Dyygi = gy—_§|v,., Dygi = a%yb[.,z = 0, 1. Then the smoothness

conditions of the bivariat€? quintic splines in Theorem 1 can be simplified
as follows:

@ =pP, a = (ap, @1, 0),|a| =5,
Dy Bo ADYBL A DYB2
@ _ a (Ag)PP (A7) (A5 _ _
bO{+93 _|;1ba+ﬁ A(l) k) a_(a07 al’ 0)7|a| _47
(A(l))ﬂo (A(l)),Bl (A(1>)/32

12— (1) 2, A A s 0=
|B|=2

More specifically, we have
bé%)o = bégo» (12)
bé(lzl)o = bill)o’ (13)
bézz)o = bélz)o’ (14)
bézs)o = béls)o’ (15)
bﬁ)o = bﬁ)o» (16)
bieo = bigo: (17)

1
(2 D 4@ @D 4D D 4@
bin = S [bso 0 T baioAr + bagiAs ] (18)
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b2 = o [P +5EAD + AL (19)
b3 = o [P +bEAD + AL (20)
b3= < [Pl + A + ] @
b= i [PAS? + bl + "] @
b3 = iy [PSAS) + BB AL + DS +

+2b70A5 AL + 2b5, G0 A + 2bélflA(f)A§1)]7 (23)
1 _
2 (@) D2 @ 1)\2 (@) D\2
by, = (AD)2 _b410(A0 )"+ byao(A77) + bai(Ay )" +
+2650A 0 AL + 26040 AP + AP AP ], (24)

1 —
by = | D1ao(AL)? + biza(Ay") + bypo(Ag)? +
+2b56 AL + 2bHAP AL + B4 AP, (25)

1
2 1 1 1 1 1 1
b(()3)2 (A (1))2 I:b(()S)O(A(l ))2 bé)3)2(Aé ))2 béfb‘)O(AE) ))2

+2b AR AL + 266 A0 AY + 2650 AP | (26)

Corresponding to the splines determined by the given interpolation con-
ditions, we have the following.

Theorem 3 Suppose that the piecewise quintic polynomial funckion, y)

is defined o, UéS and F|s, = f, F|s, = g, where fand g are determined
by the interpolation conditions (10). Thét(x, y) € C1(§;US6>) if and only

if

1
2 D 4@ D 4 1 4@
b=~ [ P5hoAl” + bl + 6345 (27)

whereb$y, and by, are defined as in (12).

Theorem 4 Suppose thatthe piecewise quintic polynomial funckion, y)

is defined ord, U s, and Fls, = f, Fls, = g, where fand g are determined
by the interpolation conditions (10). Thét(x, y) € C%(6,US6>) if and only

if

1
2 _ @D 4@ D 4@ @D 4@
b= 15 [b32 0 T Da30A1" + bz A; ]
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1
2 1 1 1 1 1 1
btz =y [BSAG2 + b ATY? + BEAAS)? +

DAL AL+ DAL AP + 20 AP ],
1
2 Q) 4 D2 D 4, (Dy2 D A D42
biz= (AD)2 [b14o(A1 )7+ biga(A37)" 4 bazo(Ag )" +
DAL AL+ 2BAD AP + 20 AP],

wherebSh, bsso, biio bia bsyy andbiy are defined as in (12).

Proof We prove only Theorem 4. First, we notice that equalities (12) and
(17) are respectively equivalent to

g = fo, 81= fi. (28)
Next, if we set
Ao = Yy1— V3, A7 1= Yo — V3, Ay 1= y1— y2 = A,
po = —(x1—x3), py:=—(xo—x3), up:=—(x1—x2) = o,
then, from
—H2 Az A2
mo —io —Ag| =0,
mo —Ag —Ag
we have
Mo —Ag —u2 A2 f =2 A2
)\' + )\' / = ’
2l =ro| "0 mo =26 0] o —ho
i.e.,
MAY + 1AL = KA. (29)
Similarly,
A AD 1 AD = A0, (30)

So from (13) and (18), we have

5 2 2 2
D, go= e} O‘E)béo)o + )‘/1[74(11)0 + )‘/2174(10)1)

5

_ (Y] @ 2
= 4D (Aobsoo + A1bato+ A2bjoy)
2

S &) &) 1 0,0,,0,0 , ,0,0
=0 |}‘6b5oo + Mbgio+ A2 7@ Bsoodo” + LaroAr” + bagyAz )
2
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(AL pADE, + G2AL 2 AD By + 2245

BRNE
ADAP
5
= m()\obé]i))o + )lel(l:lj_)o + )\’zbz(lj('j))]_ = Dx fO' (31)

Furthermore, note that (13) is equivalent to

1., / 1
o+ g [145Dx80 — 25Dy g0] = fo + 5 [w2Ds fo = 22D, fo].

so that, together with (28) and (31), we obtain
D,go = D, fo. (32)
Similarly, (16) and (22) are equivalent to
D,g1= D, f1, D,g1= D, f1. (33)

Next we examine the second derivatives. Combining (14), (19) and (23), we
have

20 ,
Duugo = Crayz |40 D80+ 000+ 0%, +

+20A bR+ 20 gbiGo + 245210

20 / 1 , 1 o
= et G0+ 224540 +
1
3 m [PosoAS"Y? + ban(AL)? + BG4S +

+2b50AY ALY + 250 AL AP + 265 A (11)A(21)] +
1
’ @D 4@ D 4@ D 4@
+2)‘0)‘2A(1) [bsovo +bg10A1" + bagiAz }4'
1
/ D 4@ D 4@ D 4@
"‘2)‘2)‘114(1) [b410AO +bap0As + b3piA; ”

20{1

— €] 7 A (D27, (1)
T (A@)2 (A<1>)2()‘2A0 + AA™) bsgo +

1
oy eAl + ARG, +

z(A(zl))zba) 22 O AD 1o 4D
‘H‘zm 302 T 2h2(A245" +A0A™)

AD
2 by +

1
D | 57 A @ 1 @
+20245" + 2AD) (R4 + 21 A ))(A(l))2b410+
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A(l)
1 ’ 2 1)
+2h(2AY + xlAﬂ))mbgll

=7 A%ff)z [18050+ 23050+ 13650, +
+ 20002bSH + 20120, + 2A2,\1bg11)1]
= Dy, fo. (34)
In addition, from (14), (19) and (23), we obtain
Dyyg0 = Dy, fo, Diygo = Dy, fo. (35)
And similarly, we can prove that (15), (21) and (26) are equivalent to
Dyxg1= Dxx f1, Dyyg1 = Dy, f1, Dxyg1 = Dy f1. (36)

This completes the proof of the theorenm

Theorem 4 indicates that the quintic spliféx, y) € S§(81 U 82) can
be determined by the given valugs$,,, D, F|,,, DyF|y,, Dxx Fly,, Dy, Fly,,
D,,F|,,i =0,1,2 3 and the three B-net ordinate$y,, b5s, andbLy, (or
b2, bSY, andbl3,). Thus there are twenty seven free parameters in total to
uniquely determine a quinti€? spline ons, U §,.

Similarly, for any quartic polynomigp(x, y) on a simplex, the free pa-
rameters op can be chosen as the function values and all the first derivative
values at the three vertices and the function values on all the middle points
of three edges and the three B-net ordinaigs, b\>, andb{},, which are
plotted in Fig. 3.

Vo vy

Fig. 3. The free parameters @f € T14 on a triangle
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Fig. 4. B-net of a quartic spline o8y U 5o

In addition, we have the following smoothness conditiongfbguartic
splines.

Theorem 5 Suppose thatthe piecewise quartic polynomial funckiar, y)
is defined or#1 U &, as shown in Fig. 4 and that|;, = f, Fls, = g Where
f and g satisfy the following conditions

fio =&, i=01

FEF) = g(25h)
D.fi = D,g,i=0,1 (37)
Dyfi =Dyg[,i =0, 1.

ThenF (x, y) € C1(81 U 8,) if and only if

1
2 _ @D 4@ D 4@ @D 4@
b= 715 [b310Ao + by0A1" + baiiA; ]

1
2 _ @D 4@ D 4@ @D 4@
b =71 [ 22040 +b130A1” +binA; ]’

where
&) 1
b3i0= fo+ Z(Mszfo — 2Dy fo),

1
b%)o = fi— Z(Mszfl — X2Dy f1),

1 vo+v
bipo= 5 (16f (<) = 5fo =5 = uaDs fo+ 42Dy fo +

+ u2Dy f1 — A2Dy f1).

57



58 H.-W. Liu, D. Hong

We can see from Theorem 5 that the quartic sphite, y) € Si(81U32)
can be determined by the given values,, D, F|,,, D,F|,,,i =0,1,2,3,
F(ofi), F(Rodt2), (i), p(atie), F(s), b)), b7, andby); and
bY. (or b2 andb(3,). Thus there are twenty one free parameters in total to
uniquely determine a quartic! spline ons; U §,.

4 Conformality conditions of bivariate quartic splines

In this section, we discuss conformality conditions of bivariate quartic
splines. Following the notation in [16], the union of all the triangles with the
common vertex of a triangulationA is called astandard cell with interior
vertexv and denoted bw,. The boundary vertices af,, in the counter-
clockwise direction, are denoted by, j = 1,2,...,d. The number of
edges emanating fromis called the degree af and denoted by d€g).

We call a triangulatiom\ an odd- (even-) triangulation if the degree of each
interior vertex inA is an odd (even) number. For a standard egllwith
interior vertexv as shown in Fig. 5, we define

vo=v, e; = [vo, ],
AV = aredv;1, vo, vj, |,
A(()j) = aredv; o, vo, v;],
AY = areduv; 1, vj12, vjl,
Aé” = aredv, 1, vo, V2],

wherej =1,...,d,andj + 1 and;j + 2 are taken mo@).

For a triangulatiom, suppose thaA, is a standard cell with an interior
vertexv of the triangulationA. Then the conditions (or linear equations)
which a spline € S;(A) satisfies around the vertexare called conformal-
ity conditions. The conformality conditions in terms of smooth cofactors
was first studied by Wang in [17]. In [18,19] (see also [20]), in order to
give an integral representation of bivariate splines, Liu introduced so-called
integral conformality conditions of bivariate splines. In [15], a simple con-
formality condition for bivariate cubi€?* splines was given. Here, we give
other conformality conditions on bivariate quartic super splines in terms of
the new set of smoothness conditions obtained in Theorem 5.

The concept of general super splines was introduced by Schumaker in
[21]. The subspace of super splines of smoothmemsd degree< k with
enhanced smoothness order r is defined as

SPP(A) = {s € S{(A) : s € C? at each vertex of}.

We consider the conformality conditions for bivariate quartic splines based
on the quartic super spline spaGé‘l(A). For this purpose, corresponding
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Fig. 5. The standard cely,

to A, for aninterior vertex := vg = (xq, yo) With d = degv) and vertices
v; = (xj,y;), j =1,...,d, being in the counter-clockwise direction, we
define

as

Sj = S(vj)7 stj = alvj’ ij = 5'1)]'

fors € So*(A,) andj =0, ..., d.

We have the following result on conformality conditions of bivariate
quartic splines.

Theorem 6 Suppose(x, y) € Sf*l(Av) is a bivariate super quartic spline
defined on a standard cell, with an interior vertex. Then the conformality
condition fors(x, y) € Si(A,) is given by:

i) if d is an even numbet(= 2N), then

2N

1 G A G 40
Z(_l)/m[szzvoj + bispAf ] =0, (39
j=1

i) if d is an odd number (d=2N+1), then

o 1RN, A D AG) 4 1) 4D

— + J J J J

bz =35 E 1 (-1 A AGHD [bzzvo + byzoA; ] (39)
j:
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Where

; 1 1
bgjs)o = S0+ Z(xj+1 — xo) Dyso + Z(yj+1 — yo) Dyso,

2
+(xj41 — x0)(Dyso — Disjr1) + (j+1 — Yo)(Dyso — Dysjy1)]

; 1 vo + v;
bi) = 5 [1as(M) — Bsg— 5sj11 +

Proof From Theorem 5, we have thatsife S;*(A,), thens € Sk (A, ) iff
M = A + AL+ BBAL A
forj =1,...,d. In other words, we have
2 @ 4D D 4D 3D 4Dy, A0
by = [bopoAy + bigpAs’ + b1z A5 /AW,
3 @ 4@ | 1D 42 | 12 47,42
bia1 = [bsaoAs + bigAr” + bi5A5 /AP,
) D 4 @d-1) | 1 (@d=D 4@d-1) | 1 (@d=1) 4@d=1D7, s(d—1
blZl - [b220 A + b130 Al =+ blZl A2 ]/A( )?
pD @) A@ 4 P @) @) 4@ 4
121 - [bZZOAO bl30A1 + blZlAZ ]/A( )

Combining these equations and noticing thgt = —AU+Y, we have

d d A(/é) d AW
(1) _ (]) () ) A 2 (€N
biz1 = Z A(‘f) (,) [b320Ad” + bisoAT 1+ ([ ] A(_())blZl
j=1 t=j =1

d AD
() 4 () (D A €]
= Z ~1* jm[szzvoj +bi30A1 1+ (=1 by,

This yields (38) ifd = 2N and (39) ifd = 2N + 1. This completes the
proof of the theorem.o

RemarkIn Theorem 6, ifA, is a quadrilateral withy being the intersection
point of the two diagonal lines, the vertexs called a singular vertex. In
this case, equality (38) in Theorem 6 is an identity. This coincides with a
known result.
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