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Abstract

Let S1
3 ( ) be the bivariate C1-cubic spline space over a triangulated quadrangulation . In this paper, an

explicit representation of a locally supported basis of S1
3 ( ) is given using the interpolation conditions at

vertices.
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1. Introduction

For a connected polygonal domain � in R2, let � be a triangulation of �, and by this, we mean
that the complement of � relative to � consists of a 6nite number of triangles such that none of
the vertices of any triangle lies on the interior of any edge of other triangles. For integers d and r
with 06 r6d− 1, we de6ne Sr

d(�) to be the vector space of Cr functions which are polynomials
with total degree at most d restricted to each triangle of �. The space Sr

d(�) is called a bivariate
spline space with degree d and smoothness order r.

Practical applications of bivariate spline spaces include function approximation, surface 6tting,
computer aided geometric design (CAGD), and numerical solution of partial di9erential equations.
One of the most basic problems in the study of spline spaces is to determine their dimensions and
to 6nd their bases.

Dimension problem was initiated with a conjecture by Strang [38,39]. The 6rst result was given by
Morgan and Scott [29] on a dimension formula and an explicit basis for bivariate spline space S1

d(�)
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with d¿ 5. Later, Schumaker [35] gave a lower bound formula for the dimension of the spaces
Sr

d(�). Alfeld and Schumaker [5] proved that Schumaker’s lower bound is in fact the dimension
of Sr

d(�) for d¿ 4r + 1. Together with Piper, they constructed an explicit basis for the space
Sr

d(�); d¿ 4r + 1 in [3]. By carefully working with the smoothness conditions in terms of B-net
representation of spline functions, Hong [17] proved that Schumaker’s lower bound formula indeed
gives the dimension for the space Sr

d(�) when d¿ 3r + 2. By a clever application of the B-net
approach, Alfeld, Piper and Schumaker [4] also extended the Morgan–Scott results to the space
S1

4 (�).
Careful readers can see that almost all of the results in the dimension problem mentioned above

merely come from those cases when degree d is relatively high versus smoothness order r. In
practical application, due to the simplicity and eGciency in calculation, the spline spaces with lower
degrees versus smoothness orders are more important and favorable. For example, spaces Sr

d(�) with
d= 2; 3; 4 for r = 1 and with d= 5; 6; 7 for r = 2. However, the dimensions of the spaces S2

d(I); d=
2; 3; 4 have not yet been determined. For r = 1, as mentioned above, the dimension of S1

4 (�) has
been successfully established by Alfeld et al. [4] and a local basis for optimal approximation purpose
has been constructed by Chui and Hong [8] using a so-called edge swapping method. However, the
dimensions of S1

2 (�) and S1
3�) are still open, although several results are obtained for some special

triangulations by Ye [41], Liu [25,26], Zhang and Lin [42], and Liu and Hong [28] for examples. As
pointed out by Morgan–Scott [30] via a counter example, the dimension of S1

2 (�) not only depends
on the topological invariants of � such as the total number of the vertices, triangles and edges,
but also heavily depends on the geometric property of triangulation �. More counter examples and
further studies can be found in [6,11,12,37]. As to the space S1

3 (�), up to now, no one knows
whether its dimension depends on the geometric structure of the triangulation or not. Alfeld [2]
seeked the possibility to determine the dimension of S1

3 (�) by using techniques developed for the
solution of Four Color Map problem.

Due to the extreme diGculty in the study of Sr
d(I) for small values of d, some special triangula-

tions are attracted attentions. The very applicable triangulations are various kinds of re6nements of
original triangulation. The idea of re6nement was originally introduced by Clough and Tocher [10]
where a triangle in the original triangulation is subdivided into three subtriangles at any interior point
of the triangle. Following their work, Ciarlet [9] and Percell [31] showed that they can uniquely
construct a C1 piecewise cubic polynomial function on �CT to interpolate the function values and
the gradient values at the vertices of � and the normal derivatives at all the edges of �, where
�CT denotes Clough–Tocher’s re6nement. They actually obtained that dim(S1

3 (�CT)) = 3|V | + |E|.
Then, Powell and Sabin [32] proposed a kind of re6nement where each triangle in the original

triangulation is subdivided into 6 subtriangles (normally, the interior point is chosen as the incenter
of the triangle), and they found that there exists a unique C1 quadratic spline function on �PS1 which
interpolates the given function values and the gradient values at the vertices of �. This means that
dim(S1

2 (�PS1)) = 3|V |. In the same paper, Powell and Sabin also studied another re6nement �PS2

where each triangle in � is divided into 12 subtriangles and they proved that there exists a unique
C1 quadratic spline function on �PS2 which interpolates the given function values and the gradient
values at the vertices of � and the normal derivatives at all the edges of �. This in fact means
dim(S1

2 (�PS2)) = 3|V | + |E|.
Recently, because of the important application in scattered data interpolation in CAGD and also

the application of multiresolution approximation, the re6nement technique becomes more and more



H.-W. Liu, D. Hong / Journal of Computational and Applied Mathematics 155 (2003) 187–200 189

attractive. On the basis of Clough–Tocher’s and Powell–Sabin’s re6ned triangulation, many kinds of
re6nements are proposed. Heindl [16] constructed a piecewise quadratic C1 interpolating spline in
�PS2. By using the three medians of three edges and the barycentre of each triangle in �PS2, an
explicit basis of S1

2 (�PS2) with support containing at most one vertex of the original triangulation �
in its interior has been constructed by Chui and He [7]. Alfeld [1] used Clough–Tocher’s re6nement
twice to subdivide each triangle of � into 9 subtriangles, and then constructed an interpolating spline
function in S2

5 (�A). Sablonniere [33] used Powell–Sabin’s re6nement method to subdivide each
triangle of � into six subtriangles at the center of its inscribed circle and constructed interpolating
spline in S2

5 (�PS1). Wang [40] subdivided each triangle of � into 7 subtriangles in a very special way
and constructed an interpolating spline in S2

5 (�W ). Gao [15] also employed Clough–Tocher’s method
and constructed an interpolating spline in S2

6 (�CT). Lai [21] generalized Sablonniere’s S2
5 (�PS1) to

Ŝ2
5(�PS1) so that C3 data is not required for interpolation.

Besides various kinds of re6nements of triangulation, a triangulated re6nement of quadrangulation
is also studied. Let ♦ be a quadrangulation of � which consists of nondegenerate convex quadri-
laterals. By adding the two diagonals of each quadrilateral, a special kind of triangulation, called
triangulated quadrangulation and denoted by , can be obtained. In 1964–1965, two Belgium engi-
neers Sanders [34] and Fraejis de Veubek [14] originally constructed a C1 cubic spline 6nite element
on and applied it in structure analysis. However, during the next thirty years, not many people
followed these two pioneers’ work. Recently, Lai [22] reconstructed the space S1

3 ( ) by extending
the well-known four-directional mesh (or Type-II triangulation) �(2)

mn into the triangulated quadran-
gulation of a general polygonal domain. In his paper, an interpolation scheme was given and the
optimal approximation order of S1

3 ( ) was also demonstrated. This is an extension of the results on
the space S1

3 (�(2)
mn) studied in [20].

As pointed out by Lai and Schumaker [23], due to the optimal approximation order, smaller
dimension, and less number of triangles in ; S1

3 ( ) is better than the typical splitting-triangulation
based spline spaces, such as S1

3 (�CT); S1
2 (�PS), and super spline space S1;2

5 (�) [36] in practical
applications. Lai and Wenston [24] have used it to solve steady state Navier–Stokes equations. Hong
and Schumaker [19] applied elements of S1

3 ( ) into surface compression very recently.
However, we need to point out that part of the B-net ordinates of the local supported basis

given by Lai [22] is de6ned by a set of interpolation conditions implicitly, this makes the ap-
plication of the basis inconvenient and ineGcient. In this paper, it is shown that, by using some
new relationship given by Hong and Liu [18,27], all the BPezier net ordinates can be analytically
solved from those interpolation conditions, therefore the locally supported basis can be explicitly
given. This can make the interpolation and approximation schemes using the splines of S1

3 ( ) more
eGcient.

2. Smoothness conditions of bivariate splines

Let T1 =[v0; v1; v2] be a planar non-degenerate triangle with vertices vi =(xi; yi)∈R2; i=0; 1; 2. Let
� = (�0; �1; �2) be the barycentric coordinate of x∈R2 with respect to the triangle T1.
Set

�i : =yj − yk; �i := −(xj − xk); �i := xjyk − yjxk ;
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with (i; j; k) being a cycling of the subscripts in cyclic order 0 → 1 → 2 → 0. Clearly, the following
identities hold:

�0 + �1 + �2 = 0; �0 + �1 + �2 = 0; �0 + �1 + �2 = 0:

Then the barycentric coordinate can be expressed as


�0

�1

�2


=

1
A(1)




�0 �0 �0

�1 �1 �1

�2 �2 �2






1

x

y


 ;

where

A(1) = 2area[v0; v1; v2] =

∣∣∣∣∣∣∣∣
1 x0 y0

1 x1 y1

1 x2 y2

∣∣∣∣∣∣∣∣
is twice of the oriented area of the triangle T1.

Let p(x; y) be a bivariate polynomial with total degree d on triangle T1. According to the theory
of B-net (see [13] for example), p(x; y) can be written as

p(x; y) = p(�0; �1; �2) =
∑

�0+�1+�2=d

b(1)
�0�1�2

d!
�0!�1!�2!

��0
0 ��1

1 ��2
2 ;

where b(1)
�0�1�2 is called the B-net ordinate of p with respect to T1.

We have the following (see [18,27]):

9p
9x
9p
9y


=



9�0

9x
9�1

9x
9�0

9y
9�1

9y





9p
9�0

9p
9�1




=
1

A(1)

[
�0 �1

�0 �1

]
9p
9�0

9p
9�1




=
∑

|�|=d−1

d
A(1)

( |�|
�

)[
�0 �1

�0 �1

][�13b(1)
�

�23b(1)
�

]
��0

0 ��1
1 ��2

2 ; (1)

where

�13b(1)
� := b(1)

�0+1�1�2
− b(1)

�0�1�2+1;

�23b(1)
� := b(1)

�0�1+1�2
− b(1)

�0�1�2+1;
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and




92p
9x2

92p
9y2

92p
9x9y




=




(
9�0

9x

)2 (
9�1

9x

)2

2
9�0

9x
9�1

9x(
9�0

9y

)2 (
9�1

9y

)2

2
9�0

9y
9�1

9y
9�0

9x
9�0

9y
9�1

9x
9�1

9y
9�0

9x
9�1

9y +
9�1

9x
9�0

9y







92p
9�2

0

92p
9�2

1

92p
9�09�1




=
1

(A(1))2




�2
0 �2

1 2�0�1

�2
0 �2

1 2�0�1

�0�0 �1�1 �0�1 + �1�0







92p
9�2

0

92p
9�2

1

92p
9�09�1




=
∑

|�|=d−2

d(d − 1)
(A(1))2

( |�|
�

)
�2

0 �2
1 2�0�1

�2
0 �2

1 2�0�1

�0�0 �1�1 �0�1 + �1�0




×



�13 �13 b(1)

�

�23 �23 b(1)
�

�13 �23 b(1)
�


 ��0

0 ��1
1 ��2

2 : (2)

Applying formula (1) and (2) to a bivariate cubic polynomial p(x; y) on T1, we have

p|v0 = b(1)
300; (3)

Dxp|v0 =
3

A(1) [�0b
(1)
300 + �1b

(1)
210 + �2b

(1)
201]; (4)

Dyp|v0 =
3

A(1) [�0b
(1)
300 + �1b

(1)
210 + �2b

(1)
201]; (5)

Dxxp|v0 =
6

(A(1))2 [�2
0b

(1)
300 + �2

1b
(1)
120 + �2

2b
(1)
102 + 2�0�2b

(1)
201 + 2�1�0b

(1)
210 + 2�2�1b

(1)
111]; (6)

Dyyp|v0 =
6

(A(1))2 [�2
0b

(1)
300 + �2

1b
(1)
120 + �2

2b
(1)
102 + 2�0�2b

(1)
201 + 2�1�0b

(1)
210 + 2�2�1b

(1)
111]; (7)
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Dxyp|v0 =
6

(A(1))2 [�0�0b
(1)
300 + �1�1b

(1)
120 + �2�2b

(1)
102

+ (�0�2 + �2�0)b(1)
201 + (�1�0 + �0�1)b(1)

210 + (�2�1 + �1�2)b(1)
111]: (8)

For convenience, we recall some notation used in [4]. Associated with the triangulation �, let

P ≡ Pd :=
N⋃

l=1

{P[l]
ijk = (iv[l]

0 + jv[l]
1 + kv[l]

2 )=d; i + j + k = d};

where v[l]
0 ; v[l]

1 ; v[l]
2 are the vertices of the lth triangle [v[l]

0 ; v[l]
1 ; v[l]

2 ] in counterclockwise order. The
points in P are called the domain points. We call the point P[l]

ijk is of distance (d − i) from vertex

v[l]
0 . Similarly, we call the point P[l]

ijk is of distance i from the edge opposite v[l]
0 . The ring of order

m around the vertex v is

Rm(v) = {points which are distance m from v};
and the disk of order m around v is

Dm(v) =
m⋃

j=0

Rj(v):

3. The explicit local basis for S1
3 ( )

Let ♦ be a convex quadrangulation of �. Subdivide each quadrilateral of ♦ into four triangles by
adding two diagonals. This results in a special triangulation, called a triangulated quadrangulation
of �. The corresponding C1-cubic spline space S1

3 ( ) is called the bivariate C1-cubic spline space
over .

Let V♦ = {v} be the collection of all vertices of ♦ and E♦ = {e} be the collection of all
edges of ♦. The locally supported basis of S1

3 ( ) constructed in [22] includes three vertex splines
Vv;s; s∈{(0; 0); (1; 0); (0; 1)} at each vertex v∈V , and one edge spline Ve corresponding to each
edge e∈E. All of these 3|V♦| + |E♦| spline functions form a local basis of the space S1

3 ( ). The
vertex splines Vv;s with s = (s1; s2)∈{(0; 0); (1; 0); (0; 1)} are de6ned by the following interpolation
conditions

DtVv;s(u) = &v;u&t; s; t ∈{(0; 0); (1; 0); (0; 1)}; u∈V♦; (9)

D(1;1)
e Vv; s(ve;1) = 0; e∈E♦; (10)

and the edge spline Ve with e∈E♦ is de6ned by

DtVe(u) = 0; t ∈{(0; 0); (1; 0); (0; 1)}; u∈V♦; (11)

D(1;1)
c Ve(vc;1) = &c;e; c = [vc;1; vc;2]∈E♦; (12)
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where

Dtf(x; y) = Dt1
x Dt2

y f(x; y);

Dt
ef(x; y) = (Dve−ve; 1)

t1(Dve; 2−ve; 1)
t2f(x; y)

for t = (t1; t2)∈Z2
+. Here and throughout, as usual, the symbols &t; s and &u;v are the Kronecker delta.

We now begin to determine the B-net ordinates �i; i = 1; 2; 3; ), and * as shown in Fig. 2 of
[22] and to give all B-net ordinates of the edge spline Ve. We divide our discussion into four cases.

(1) The vertex spline Vv; (0;0)(x; y).
In this case, condition (9) can be written as

Vv; (0;0)(v1) = 1;

DxVv; (0;0)(v1) = 0;

DyVv; (0;0)(v1) = 0:

By using (3)–(5), the above equations are equivalent to

�1 = 1;

(y2 − yO)�1 + (yO − y1)�3 + (y1 − y2)� = 0;

(xO − x2)�1 + (x1 − xO)�3 + (x2 − x1)� = 0

if we restrict Vv; (0;0)(x; y) on the triangle �v1v2O, and are equivalent to

�1 = 1;

(yO − y4)�1 + (y4 − y1)� + (y1 − yO)�2 = 0;

(x4 − xO)�1 + (x1 − x4)� + (xO − x1)�2 = 0

if we restrict Vv; (0;0)(x; y) on the triangle �v1Ov4, where � = (�2 + k�3)=(1 + k) is the B-net ordinate
as shown in Fig. 2 of [22] and (xO; yO) and (xi; yi) are coordinates of vertex O and vertices
vi; i = 1; : : : ; 4, respectively. Hence, we have

� = �i = 1; i = 1; 2; 3:

We now consider the condition (10) for e = [v1; v2]. Without loss of generality, we assume that
the area of the triangle �v1v2O as shown in Fig. 2 of [22] is larger than that of the triangle which
shares the common edge [v1; v2] with �v1v2O. Then the vertex ve can be chosen as O and the
condition (10) is clari6ed as

DO−v1Dv2−v1Vv; (0;0)(v1) = 0;

or equivalently

(x2 − x1)(xO − x1)DxxVv; (0;0)(v1) + (xO − x1)(y2 − y1)DxyVv; (0;0)(v1)

+(x2 − x1)(yO − y1)DxyVv; (0;0)(v1) + (yO − y1)(y2 − y1)DyyVv; (0;0)(v1) = 0:

By using (6)–(8), the above equation can be transformed into

b300 − b201 − b210 + b111 = 0;
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β

η

Fig. 1. B-net ordinates of Vv; (0;0): a = () + k*)=(1 + k); b = )=(1 + h); c = () + k*)=((1 + k)(1 + h)) and d = )=(1 + h)
with k = |v4 −O|=|O− v2| and h = |v1 −O|=|O− v3|, where * = 1 (or ) = 1) if the area of �v1v2O (or �v1Ov4) is larger
then that of the triangle sharing the common edge [v1; v2] (or [v1; v4]) with �v1v2O (or �v1Ov4), otherwise * (or )) is
determined by smoothness conditions along [v1; v2] (or [v1; v4]). In addition, other B-net ordinates on all domain points
“◦” are vanished.

or equivalently,

�1 − � − �3 + * = 0;

and thus, * = 1. Similarly, we can also determine ). The support of the vertex spline Vv; (0;0)(x; y)
and the corresponding B-net ordinates for this case are displayed in Fig. 1.

(2) The vertex spline Vv; (1;0)(x; y).
In this case, condition (9) can be written as

Vv; (1;0)(v1) = 0;

DxVv; (1;0)(v1) = 1;

DyVv; (1;0)(v1) = 0:

By using (3)–(5), the above equations are equivalent to

�1 = 0;

(y2 − yO)�1 + (yO − y1)�3 + (y1 − y2)� =
2S�v1v2O

3
;

(xO − x2)�1 + (x1 − xO)�3 + (x2 − x1)� = 0

if we restrict Vv; (1;0)(x; y) on the triangle �v1v2O, and are equivalent to

�1 = 0;

(yO − y4)�1 + (y4 − y1)� + (y1 − yO)�2 =
2S�v1Ov4

3
;

(x4 − xO)�1 + (x1 − x4)� + (xO − x1)�2 = 0
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β

η

Fig. 2. B-net ordinates of Vv; (1;0): a = () + k*)=(1 + k); b = )=(1 + h); c = () + k*)=((1 + k)(1 + h)) and d = )=(1 + h)
with k = |v4 −O|=|O− v2| and h = |v1 −O|=|O− v3|, where * = (x2 + xO − 2x1)=3 (or ) = (x4 + xO − 2x1)=3) if the area of
�v1v2O (or �v1Ov4) is larger then that of the triangle sharing the common edge [v1; v2] (or [v1; v4]) with �v1v2O (or
�v1Ov4), otherwise * (or )) is determined by smoothness conditions along [v1; v2] (or [v1; v4]). In addition, other B-net
ordinates on all domain points “◦” are vanished.

if we restrict Vv; (1;0)(x; y) on the triangle �v1Ov4, where � = (�2 + k�3)=(1 + k) is the B-net ordinate
as shown in Fig. 2 of [22]. Hence, we have

�1 = 0; �2 =
x4 − x1

3
; �3 =

x2 − x1

3
; � =

xO − x1

3
:

We now consider condition (10) for e = [v1; v2]. Without loss of generality, we assume that the
area of the triangle �v1v2O in Fig. 2 in [22] is larger than that of the triangle which shares the
common edge [v1; v2] with �v1v2O. Then the vertex ve can be chosen as O and condition (10) is
clari6ed as

DO−v1Dv2−v1Vv; (1;0)(v1) = 0

or

(x2 − x1)(xO − x1)DxxVv; (1;0)(v1) + (xO − x1)(y2 − y1)DxyVv; (1;0)(v1)

+ (x2 − x1)(yO − y1)DxyVv; (1;0)(v1) + (yO − y1)(y2 − y1)DyyVv; (1;0)(v1) = 0:

By using (6)–(8), the above equation can be transformed into

b300 − b201 − b210 + b111 = 0

or equivalently

�1 − � − �3 + * = 0;

and thus,

* =
x2 + xO − 2x1

3
:

Similarly, we can also determine ). The support of the vertex spline Vv; (1;0)(x; y) and the corre-
sponding B-net ordinates for this case are displayed in Fig. 2.
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(3) The vertex spline Vv; (0;1)(x; y).
In this case, condition (9) can be written as

Vv; (0;1)(v1) = 0;

DxVv; (0;1)(v1) = 0;

DyVv; (0;1)(v1) = 1:

By using (3)–(5), the above equations are equivalent to

�1 = 0;

(y2 − yO)�1 + (yO − y1)�3 + (y1 − y2)� = 0;

(xO − x2)�1 + (x1 − xO)�3 + (x2 − x1)� =
2S�v1v2O

3
if Vv; (0;1)(x; y) is restricted on the triangle �v1v2O, and are equivalent to

�1 = 0;

(yO − y4)�1 + (y4 − y1)� + (y1 − yO)�2 = 0;

(x4 − xO)�1 + (x1 − x4)� + (xO − x1)�2 =
2S�v1Ov4

3
if Vv; (0;1)(x; y) is restricted on the triangle �v1Ov4, where b=(�2 +k�3)=(1+k) is the B-net ordinate
as shown in Fig. 2 of [22]. Hence, we have

�1 = 0; �2 =
y4 − y1

3
; �3 =

y2 − y1

3
; � =

yO − y1

3
:

We now consider condition (10) for e = [v1; v2]. Without loss of generality, we assume that the
area of the triangle �v1v2O in Fig. 2 of [22] is larger than that of the triangle which shares the
common edge [v1; v2] with �v1v2O. Then the vertex ve can be chosen as O and the condition (10)
is clari6ed as

DO−v1Dv2−v1Vv; (0;1)(v1) = 0

or

(x2 − x1)(xO − x1)DxxVv; (0;1)(v1) + (xO − x1)(y2 − y1)DxyVv; (0;1)(v1)

+ (x2 − x1)(yO − y1)DxyVv; (0;1)(v1) + (yO − y1)(y2 − y1)DyyVv; (0;1)(v1) = 0:

By using (6)–(8), the above equation can be transformed into

b300 − b201 − b210 + b111 = 0;

or equivalently,

�1 − � − �3 + * = 0;

and thus, we obtain

* =
y2 + yO − 2y1

3
:
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Fig. 3. B-net ordinates of Vv; (0;1): a = () + k*)=(1 + k); b = )=(1 + h); c = () + k*)=((1 + k)(1 + h)) and d = )=(1 + h)
with k = |v4 −O|=|O − v2| and h = |v1 −O|=|O − v3|, where * = (y2 + yO − 2y1)=3 (or ) = (y4 + yO − 2y1)=3) if the area
of �v1v2O (or �v1Ov4) is larger then that of the triangle sharing the common edge [v1; v2] (or [v1; v4]) with �v1v2O (or
�v1Ov4), otherwise * (or )) is determined by smoothness conditions along [v1; v2] (or [v1; v4]). In addition, other B-net
ordinates on all domain points “◦” are vanished.

Similarly, we can also determine ). The support of the vertex spline Vv; (0;1)(x; y) and the related
B-net ordinates for this case are displayed in Fig. 3.

(4) The edge spline Ve(x; y).
For any triangle [v[l]

0 ; v[l]
1 ; v[l]

2 ]∈ with v[l]
0 ∈V♦ and v[l]

j = (x[l]
j ; y[l]

j ); j = 0; 1; 2, condition (11) can
be written as

Ve(v
[l]
0 ) = 0;

DxVe(v
[l]
0 ) = 0;

DyVe(v
[l]
0 ) = 0:

It follows from (3)–(5) that the above equations are equivalent to

b[l]
300 = 0;

(y[l]
1 − y[l]

2 )b[l]
300 + (y[l]

2 − y[l]
0 )b[l]

210 + (y[l]
0 − y[l]

1 )b[l]
201 = 0;

(x[l]
2 − x[l]

1 )b[l]
300 + (x[l]

0 − x[l]
2 )b[l]

210 + (x[l]
1 − x[l]

0 )b[l]
201 = 0:

Hence,

b[l]
300 = 0; b[l]

210 = 0; b[l]
201 = 0:

In other words, for any vertex v∈V♦, all the B-net ordinates related to the domain points in the
disk D1(v) are vanished.

We now consider condition (12) for any c = [vc;1; vc;2]∈E♦. Clearly, there are two triangles in
sharing c. Let us choose the one which has the larger area if possible. Otherwise we choose any one
of them. Denote it by [vc;1; vc;2; vc]. If c is a boundary edge then there is one triangle [vc;1; vc;2; vc]
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Fig. 4. B-net ordinates of Ve: b1 = k=(6(1 + k)); c1 = k=(6(1 + k)(1 + h)); d1 = 1=(6(1 + h)); a2 =− 1
6 S�O2ve;1ve;2

=S�O1ve;1ve;2
;

b2 =a2=(1+h′); c2 =a2=((1+k ′)(1+h′)) and d2 =a2=(1+k ′) with k=|O1v1|=|O1ve;2|; h=|O1ve;1|=|O1v2|; k ′=|O2ve;2|=|O2v4|
and h′ = |O2ve;1|=|O2v3|, while other B-net ordinates on all domain points “◦” are vanished.

containing edge c. Let vc;1 = (xc;1; yc;1); vc;2 = (xc;2; yc;2) and vc = (xc; yc). Then condition (12) is
clari6ed as

Dve−vc; 1Dvc; 2−vc; 1Ve(vc;1) = &c;e;

or equivalently,

(xc;2 − xc;1)(xc − xc;1)DxxVe(vc;1) + (xc − xc;1)(yc;2 − yc;1)DxyVe(vc;1)

+ (xc;2 − xc;1)(yc − yc;1)DxyVe(vc;1) + (yc − yc;1)(yc;2 − yc;1)DyyVe(vc;1) = &c;e:

By using (6)–(8), the above equation can be transformed into

b300 − b201 − b210 + b111 =
1
6

&c;e;

where bijk ; i + j + k = 3 is the B-net ordinate of Ve(x; y) with respect to the triangle [vc;1; vc;2; vc].
Noticing that b300 = 0; b210 = 0; b201 = 0, we have

b111 =
1
6

&c;e:

Finally, the remainder of the B-net ordinates on the whole triangulation � can be explicitly deter-
mined by using smoothness conditions. The support of the edge spline Ve(x; y) and the corresponding
B-net ordinates are shown in Fig. 4.
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