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Abstract

The objective of this paper is to present a study of scattered data repre-
sentation using bivariate splines. First, we open a discussion with emphasis
on the optimal order of approximation. When the polynomial degree is al-
lowed to be sufficiently large as compared to the order of smoothness, it is
shown that the spline elements can be used to represent scattered data with
the optimal order of approximation over arbitrary triangulations. In real
applications, the polynomial degree is required to be lower, it is necessary
to find a so-called optimal triangulation so that the spline space can achieve
the optimal approximation order. We present an algorithm to transform an
arbitrary triangulation of the sample points into an optimal triangulation
for representation of the scattered data using C' quartic splines. Then, we
consider the possibilities to find optimal triangulations for even lower degree
spline spaces such as C' cubic and C! quadratic spaces. Some interpola-
tion schemes and stable local basis construction are also presented. Finally,
we mention some recent results on representing scattered data using other
spline elements, such as splines on spheres and natural splines.

AMS(MOS) 1991 subject classification: 41A05, 41A15, 41A25, 65D07.
Keywords and Phrases: Splines, scattered data, approximation order,
bivariate interpolation, natural splines, local basis, optimal triangulations.



2 Hong

Contents

1. Introduction
2. Approximation order of spline spaces over triangulations
3. Optimal triangulations for lower-degree bivariate spline spaces

4. Interpolation and approximation using C! cubic and C' quadratic
splines

5. Stable local basis and local linear independent basis

6. Splines on sphere and natural splines

0.1 Introduction

In many applications, it is desirable to approximate a given surface with
a high degree of accuracy. Scattered data on the surface may be collected
by recording the distance from sample points in a fixed plane to the surface.
Once the scattered data has been collected, it is necessary to determine sim-
ple functions to interpolate, or best fit, the data. An ideal choice for these
simple functions is splines, also called piecewise polynomial (pp) functions.

Since a bivariate spline is piecewise-defined over its planar domain, it is
necessary to create a partition of the sample points in the plane. One of
the most applicable partitions in this case is triangulation.

DEFINITION 0.1

A triangulation of a finite set V' of n sample points v; = (x;,y;), i =
1,---,n in a plane R? is defined as a collection A of triangles T satisfying
(i) the vertices of the triangles are precisely the sample points vi; (ii) the
union of the triangles in A is a connected set, and (iii) the intersection of
any two adjacent triangles in A is either a common vertex or a common
edge. The vertex set of the triangulation A will be denoted as V.

In general, for a given set V' of data sites, there are many different trian-
gulations with vertex set V. On a triangulation A of a polygonal domain
Q C R? with vertex set V, one of most important problems in application
is to represent scattered data defined on V' by C” smooth spline functions.
Of course, one usually wants to find an optimal triangulation of the given
sample sites. Though the notion of optimality depends on the desirable
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properties in the approximation or modeling problems, Here, we are con-
cerned with optimal order of approximation with respect to the given order
r of smoothness and degree k of the polynomial pieces of the smooth spline
functions. In the study of spline functions on a triangulation A, the nota-
tion S} (A) is used to denote the subspace of C" () of all pp functions with
total degree < k and with grid lines given by the edges of A.

In scattered data representation using splines in the space Sj(A), it is
critical to answer the question of how well the splines can approximate
classes of smooth data. We give the definition of the approximation order
of a function space S as follows.

DEFINITION 0.2 The approximation order of a space S of functions
on IR? is defined to be the largest real number p for which

dist(f, S) < Const|[ D1 7] [A]° (1)
for any sufficiently smooth function f, with the distance measured in the
mazimum norm || ||, and with the mesh size |A| := sup diam 7.

TEA

It is clear that the full order of approximation from the spline space
S;(A) cannot be better than k 4 1 regardless of r and is trivially £+ 1 in
the case r = 0.

We use the term optimal triangulation of a given set V' of data sites to
mean that (i) the set V' of sample sites is the same as the set of vertices
of the triangulation, and (ii) the space of pp functions with degree k and
smoothness order r on this triangulation achieves the full order of approx-
imation. More precisely, we make the following.

DEFINITION 0.3  For a given set V of data sites, the degree k and the
smoothness order r, any triangulation A with vertex set V is called optimal
(of type (k,7)) if the spline space S},(A) admits full approzimation order
k+1.

In addition to the huge volume of research published on representing
scattered data using multivariate splines, there are several survey articles
that are related to this area (cf. Schumaker [61] and [62], Barnhill [7],
Franke [32], Alfeld [1], Dahmen and Micchelli [25], B6hm [8], and Hong
[?]). Currently, box splines, thin-plate splines, and radial-basis functions
are among the most commonly used tools for scattered data interpolation.
However, from the computational point of view, a simple and efficient mul-
tivariate spline interpolation scheme for scattered data is still not available.
This give rise the problem to study lower degree spline spaces and to find
locally supported basis elements for the optimal order of approximation.
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This problem, however, is extremely complicated, and a general approach
does not seem to be feasible. Here, in this paper, we first consider to find
optimal triangulations for C' quartic spline spaces. We present an algo-
rithm to transform an arbitrary triangulation of the sample points into
an optimal triangulation for representation of the scattered data using C'
quartic splines. Then, we also open the discussions to even lower degree
spline spaces such as C' cubic and C! quadratic spaces. Some interpola-
tion schemes and stable local basis construction are also presented. Finally,
we present some recent results on representing scattered data using other
spline elements such as splines on sphere and natural splines.

The outline of this paper is as follows. Results on approximation order of
spline spaces over arbitrary triangulations will be first discussed. Optimal
triangulations and the algorithm to create optimal triangulations based on
arbitrarily given data sites for C' quartic spline spaces will be introduced
in Section 3. The discussion of optimal triangulations for C' cubic and
quadratic spline spaces and some other spline spaces will be in Section 4.
Section 5 will be devoted to the study of existence of local basis and the local
linear independence of basis functions. The approaches of scattered data
representation using splines on sphere and natural splines are mentioned in
the last section.
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0.2 Approximation order of spline spaces over trian-
gulations

As usual, let R be the set of all real numbers and Z the set of nonnega-
tive integers. Thus R® denotes the 3-dimensional Euclidean space and Zi
can be used as a multi-index set, while 7, (]RQ) is the space of all polynomi-
als of (total) degree < k in two variables. Let 7 = [v, v1, V2] be a proper
triangle with vertices vq, v1, vo € R?. Then for any x € IR?, we have

x=%&vo+&vi+&ve with g+ &G +& =10

The 3-tuple £ = (£0,&1,&2) is called the barycentric coordinate of x with
respect to the triangle 7. For a@ = (a, a1, a3) € Zi, the length of « is
defined by |a| = ag + a1 + a9, and the factorial ! is defined as aglag!las!.
We define the Bernstein Polynomial B, s as

Bor(x) = <Z|)£°‘,

where £% = £5°£77 €57 and
ol __lal
« aplaglag!”

Moreover, we define the (domain) points

aoVg + a1vy + aov
Xy = oVvVo 1V1 2 2’ \a|=k. (2)

’ |

It is well known that any polynomial p € m; can be written in a unique

way as
b= Z ba,‘rBoz,Tv
la|=k

where b, is called the B-net ordinate of p with respect to triangle 7. This
gives rise to a mapping b : X,,r — ba 7, || = k. Such a mapping b is called
the B-net representation of p with respect to triangle 7.

Now, let us discuss the B-net representation of bivariate splines. Let A
be a triangulation of a polygonal domain in R? and SE(A) the space of all
continuous splines of degree k on A. Assume s € SP(A). On each triangle
T € A, s agrees with some polynomial p € . Thus, we have

S‘T = Z boc,‘rBa,‘r‘

ler|=k
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Let X denote the set of all (domain) points x4, as defined in (2). Then a
mapping can be defined as follows:

bs 1 X7 bayr, o=k, TEA. (3)

Such a mapping by is called the B-net representation of the spline s.
It is well-known that to each triangle 7 € A, the matrix

(Bar (%5,7)) |k 81—k
is invertible. Thus, the linear system
1, a=p
Z CayBa,r(Xy,r) = ba,p 1= {0 a3
=k ’

has a unique solution.

Since this linear system depends only on the barycentric coordinates of
Xa,r, the solution {c,,g} is independent of 7. Let [ - | denote the point-
evaluation functional, namely:

[Xa,‘r}f = f(XO(,T)'

Then it is easy to see that the functionals

Loy = Z ca/‘r[x"/ﬂ'}v a € Z3+7 ‘O‘| =k,
|v|=k

form a dual basis of {B, -; |a| = k} in the sense of
Lo+ Bpr =dap, laf =6 =F.

Furthermore, there is a positive constant C, depending only on the degree
k, such that

| La,r

|:== sup |[|La,rfllec = max|cqg| < Ck, (4)
[1f]loc=1 |Bl=k

for a € Zi, |a| = k. From (4) and the fact that bs(x4,) = Lo, S, we have
the following.

LEMMA 0.1

If s € SY(A) and bs € IRX is the B-net representation of s, then

[Islloo < 11Bslloc < Cklls]loo- ()

Now, let 7 = [vg, vy, Vo] and T = [vg, vy, Vo] be two triangles in A with
common edge e = [vg, v1]. Let S, So, S1, and S denote the oriented areas of
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the triangles 7, [Vo, V1, V2], [Vo, V2, Vva], and 7, respectively. The following
result, which describes C"-smoothness conditions on a spline function s in
terms of its B-net representation, can be found in [44] (see also [10], [16],
etc.).

THEOREM 0.1
Suppose that a bivariate spline function s is defined on the union of two
triangles T UT by

5‘7’ == Z b(xa,'r)Boc,T;

le|=k
S‘;— = Z b(Xa,;—)Ba g
|| =k

Then s € CT™ (T UT) if and only if for all positive integers £ < r and v =
(’Yuv’)/’uvo) S Zﬁ, with "}/| =k — Z;

b6 a5 = 2 (b1 (%)ﬁ (%)ﬁ (%)ﬁ (6)

|B|=¢
where 8= (Bo, 81, 02) € Zi and e = (0,0,1).

Let E; be the set of interior edges of A. For e € E; and two triangles
T = [vg, V1, Vo] and T = [vg, Vg, Vo] sharing the common edge e = [vg, v1],
and a = (ag, a1, a9) € Zi with 1 < ag <, we define the functionals fe o
on IRY, the space of all real functions, by

o Sﬁosﬂlsﬂz
O R Dl () ORI <57> 7)

|Bl=aa

It is clear that the support of the functional A is included in a diamond

(a0ta2)votaivi  aovot(aitaz)vi
k ? k

domain with vertices X ~and X4 ;.
? Ta, T ’

As an example, we can see that the C'-smoothness conditions across the
edge e for s € S}(A) is determined by the relation

bcx+e3,’7\: = Clba+e1,T + CQbochez,T + C3ba+63,75 (8)

where a = (ag,a1,0) € Zi with ag + a1 = 3, e', €2, and e are the

standard unit vectors in IR?, ba,r = bs(Xqa,r) is the B-net representation of

s, and ¢;, 1 = 1,2, 3, are the barycentric coordinates of vy with respect to
T.
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Recall that IR¥ is the space of all real functions. Let |X| denote the
cardinality of the set X of domain points. Then the spaces Sg(A) and R*
are isomorphism. Therefore, we have

dim(Sp(A)) = | X].
Let A = A}, be the set of all such functionals defined by (7) and
At ={bc R¥; \b=0,YA € A}

Then we see that the spaces S (A) and (A})~+ are isomorphism. Therefore,
we have the following.

THEOREM 0.2
dim(SI(A)) = |X| — dim(AL).

It is certainly not trivial to determine dim(Aj}). However, this theorem
is helpful to determine dimension of spline spaces in the case of k > 3r + 2
(see [41]). For some recent progress in the study of dimension problem of
spline spaces, please see [42].

B-net representation of splines can also be applied to study approxima-
tion order of Si(A). For this purpose, we define Lo, norm on linear space
Si(A) and £y norm on linear space IR¥. Then these two norms are equiv-
alent by (5). Since R is finitely dimensional, the dual space of R* has
norm ¢;. For g € SE(A), using the dual theorem in functional analysis, we

have
dist(g, S{(A)) = Pl 9
ISt(gv k( )) = SUP)eA H>‘H . ( )

If f is a continuous function, then there is a unique function g € SP(A)
such that f and g have the same values at points in X. Then f — g gives
a projection operator P from C to S(A). From (9), we have

THEOREM 0.3

Let f be a continuous function. Then

A
dist(f, SE(A)) — supAeAﬁ < - Pl

In the above theorem, || f—P f|| turns to be a local approximation problem
and it is not so difficult to determine its approximation order. Thus, the
key point is to determine

[APf]
SUPrea H)‘H .
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In general, it is well known that the approximation order of S},(A) not
only depends on k£ and 7, but also on the geometric structure of the partition
A. According to the results of finite elements analysis in [68] and [9], it
was believed in the past that the full approximation order of p = k + 1
can be obtained from the spline space S},(A) only when the degree of the
polynomial k is at least 4r+ 1. de Boor and Héllig [14] applied this theorem
and proved the following (see also [21] for a constructive proof).

THEOREM 0.4
For k > 3r+2 and sufficiently smooth function f, there is a constant Const
which only depends on the smallest angle of the partition /A such that

diSt(fv S;(A)) < ConSt|A|k+1Hf”k+1,oo-

Chui, Hong, and Jia in [21] provided a constructive scheme to achieve
this optimal approximation order based on a stable basis of S}, (A) for the
case of k > 3r + 2. Therefore, any triangulation A is optimal for the spline
space S;(A) as long as k > 3r +2. It is natural to ask that if the condition
k > 3r+2is sharp. In other words, is there any pair of integers k and r with
k < 3r+1 such that any triangulation is optimal for S}, (A)? The first result
in this direction was obtained by de Boor and Héllig (see [12]). They proved
that S3(AM)) has approximation order 3 instead of 4. Here A" stands for
a three-directional mesh (also called a type-1 triangulation) which is formed
by a uniform rectangular partition plus all northeast diagonals. Later, de
Boor and Jia in [15] considered the approximation order of spline spaces
over the three-direction mesh A(") for general smoothness order r. They
obtained the following.

THEOREM 0.5
For a three-directional mesh A1), the approzimation order of the space
S;(A(l)) is at most k provided that k < 3r + 1.

Theorem 4 shows that if k is sufficiently large compared to r, the spline
space S} (A) provides the full accuracy expected of piecewise polynomials
of degree k. If k < 3r 4+ 1, generally speaking, the space Sj(A) does not
have full order of approximation as shown in Theorem 5 for A is the three-
direction mesh A, But, it is not known what its generic approximation
order is. de Boor conjectured that bivariate C' cubic spline space has
approximation order 0 generically (see [11], sect. 7.).

Recall that a triangulation formed from a uniform rectangular partition
by drawing both northeast diagonals and northwest diagonals are is called
a type-2 or four-direction mesh, and it is denoted by A(®. Notice that the
intersections of diagonals are also in the vertex set V.
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For a type-2 triangulation A(?), Dahmen and Micchelli [26] proved that
the space Si(A(Z)) arrives at the optimal approximation order 5. More
general, for a type-2 triangulation A(?), Jia [46] proved the following general
result by considering the local approximation order provided by the box
splines in Sp(A®).

THEOREM 0.6

The approzimation order of S;(A@)) for a four-direction mesh A®) is k+1
ifr<landk>r+1.

Theorem 6 shows that the space S} (A®) has full order of approximation
if k& > 2. Tt already covered a later result published in [48] on S3(A®)).
This gives rise to a question: is there any optimal triangulation for the
spline space S, (A) even though k < 3r + 17

It will be very interesting to find some triangulations A, which are some-
what specific but more general than the type-2 triangulation, such that the
spline space S}, (A) still has full approximation order k + 1. The question
was well-answered for C! quartic spline spaces and we will discuss this in
some details in the next section.

Similar to the structure of type-2 triangulation, a quadrangulation of a
connected polygonal domain © in IR? can be defined as follows.

DEFINITION 0.4 A collection of quadrilaterals ¢;,i = 1,---, N s
called a quadrangulation diamond of a Q if (i) Q = Ef\il qi; (ii) the in-
tersection of any two quadrilaterals is either empty, a single vertez, or a
common edge; (iii) for any two quadrilaterals q1,qy, there is a sequence of
quadrilaterals q1,- - ,qn in & such that each pair q;,q;11 share exactly one
edge with each other. { is called convez if all quadrilaterals are convex, and
& is said to be nondegenerate if none of the quadrilaterals is a triangle.

For a nondegenerate convex quadrangulation of a polygonal domain 2
in R?, we use ¢ to denote the triangulation obtained by inserting the
diagonals of each quadrilateral of {}. Spline spaces defined on triangulated
quadrangulations have been studied both in the field of finite elements
and spline theory. Finite elements in Si(4») were constructed in [33] and
[60]. The approximation properties of S3 (&) were investigated in [23] for Lo
norm and in [49] for Lo, norm. Finite elements spanning a certain subspace
of S3,.(¢$) for odd integer r and Sj, (¢) for even integer r were constructed
in [47] recently. The approximation properties under L., norm were also
studied there. In [52], the following result is obtained.
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THEOREM 0.7
Forintegersr > 1 and 0 < m < 3r. There exists a linear quasi-interpolation

operator Qp, : L1(Q) — S% () such that

IDEDE(f — Quf)llp < Const| ™ =P £l 11,

for1 <p<oo, 0<a+ B <m, and f in the Sobolev space VV;”“(Q).
Here |$| is the mesh size of $.

Therefore, the triangulation ¢ is optimal for the spline space S} (¢) if
k > 3r. Notice the similar structures between the triangulation ¢ and a
four-directional mesh A(?), we would like to make the following conjecture.

Conjecture. The triangulation ¢ is optimal for the spline space Si,($) if
k>2r+1.

0.3 Optimal triangulations for lower-degree bivariate
spline spaces

Since lower degree spline spaces are preferable for application purposes, it
is beneficial to determine optimal triangulations for S (A) when k < 3r+1.
This section will specifically focus on the spline space of C! quartic splines,
SHA).

Recall that de Boor and Jia proved in 1993 in [15] that the bivariate spline
space S} (A(l)) attains an approximation order of at most k for k < 3r + 1.
So AW is not an optimal triangulation for the spline space Si(A) when
k < 3r + 1. In particular, S}(A()) attains an approximation order of at
most 4, but not the optimal approximation order of 5. So S}(A®M) is not
optimal for C' quartic splines.

A couple of techniques have been implemented in recent years to de-
termine optimal triangulations for C' quartic splines. In 1996, Chui and
Hong developed in [19] a scheme known as a Local Clough-Tocher Refine-
ment Scheme to transform an arbitrary triangulation of data points into
an optimal triangulation for C' quartic splines. There some triangles are
refined into three subtriangles to become a Clough-Tocher cell. Here, local-
ity means that the Clough-Tocher triangle is applied only to some isolated
triangles in A, and as usual, a triangle is called a Clough-Tocher triangle, if
it is subdivided, by using an interior point (such as the centroid of the trian-
gle), into three subtriangles. A interpolation scheme was also constructed
there by using certain locally supported Hermite elements, which are called
star-vertex splines, to achieve this optimal approximation order.
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Generation of an optimal mesh is one of the most important facets in
finite element modeling. The method of local Clough-Tocher refinement of
triangulations can be undertaken without any element distortion, and the
local interpolation schemes will help in drastically decreasing the computa-
tional complexity as compared with the standard (global) Clough-Tocher
scheme.

However, the disadvantage of this scheme is that it requires the inclusion
of additional data points and often in applications no scattered data is
available for additional data sites. To avoid introducing some new data
points in addition to the vertex set of the triangulation A, as in the local
Clough-Tocher refinement, Hong and Mohapatra later developed in 1997
in [43] a mized three-directional mesh which is an optimal triangulation for
C' quartic splines on the existing data points. A rectangle with northeast
diagonal is called a NE-rectangle. Similarly, a rectangle with northwest
diagonal is called a NW-rectangle. For a triangulation A which consists of
NE- and NW-rectangles we may call A a mixed three- direction mesh and
denote it by A®), In [43], we obtain the following.

THEOREM 0.8

For a mized three-direction mesh A®) there is a linear interpolating opera-
tor T: f e CYA®)) = s € S}HAB) such that Tp = p for any polynomial
p € w4 and such that T achieves the optimal order of approzimation; that
is,

ITg —gll < Clg AP, for g € C3(A), (3.1)
where |A®)| is the mesh size of A,

Therefore, the mixed three-directional mesh A®) is optimal for C' quar-
tic spline space S}(A®)). And so, the mixed three-directional mesh A®) is
better than the three-directional mesh in the sense that the corresponding
spline space has a higher order of approximation. Also the mixed three-
directional mesh A®) is better than local refinements in the sense that the
C" quartic spline space achieves the optimal approximation order by using
a smaller number of data sites in the interpolation. In comparison, the
mixed three-directional mesh using the data only at the intersections of
rectangle lines and with the optimal-order 5 can also be achieved by the
space S}(A®). Therefore, the mixed three-directional mesh is also better
than the four-directional mesh in this point.

The uniform partition certainly restricts the application of the mixed
three-directional elements to the arbitrarily given data points. In [20], we
considered C' quartic spline space over arbitrary triangulations and pro-
vided an efficient method, called Edge Swapping Algorithm, for triangulat-
ing any finite arbitrarily scattered sample sites, such that for any discrete
data given at these sample sites, there is a C' quartic polynomial spline
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on this triangulation that interpolates the given data with the optimal or-
der of approximation. The MatLab complementation of the algorithm and
numerical examples were given in [30]. To explain the idea of the Edge
Swapping Algorithm here, we need to recall some notation from graph the-
ory. The degree of any vertex v € V, which we will denote by deg(v), is
the number of edges emanating from v. If deg(v) is an even integer, then
we say that v is an even-degree vertex; otherwise, v is called an odd-degree
vertex. In addition, an interior vertex v is called a singular vertex if (i) its
degree is 4 and (ii) it is the intersection of two straight line segments. If
€j—1,€;5,¢ej41 are three consecutive edges with a common vertex v, then the
edge e; is called degenerate with respect to v, provided that the two edges
e;j—1 and e;y; are collinear. Now, we are ready to introduce the notion of
type-O triangulation.

A vertex u will be called a type-O vertez of a triangulation A if u satisfies
at least one of the following.
(a) u is a boundary vertex of A.
(b) u € Vi with deg(u) = 4.
(¢) u € Vi and deg(u) is an odd integer.
(d) u € V; and there exists a vertex v of A that satisfies either (i) v € V;
and deg(v) =4 or deg(v) = an odd integer, or (ii) v € V4, such that [u, V]
is a nondegenerate edge of A with respect to u.

We will use Vp to denote the collection of all type-O vertices in V.

DEFINITION 0.5 A triangulation of V with only type-O vertices (i.e.,
V =Vo) is called a type-O triangulation.

The reason for introducing the notion of type-O triangulations is the
following (see [20]).

THEOREM 0.9
Any type-O triangulation A admits the optimal (5th) order of approxima-
tion from Si(A).

As a consequence of the above theorem, we have

COROLLARY 0.1
If a triangulation A consists only of odd-degree interior vertices, then the
spline space Si(A) yields the optimal order of approzimation.

To convert any triangulation to be a type-O triangulation, we introduce a
so-called edge swapping algorithm. Every interior edge e of a triangulation
A is the diagonal of a quadrilateral Q. which is the union of two triangles
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Figure 1. A triangulation A Figure 2. An Optimal triangulation from A

of A with common edge e. Following [63], we say that e is a swappable
edge if Q. is convex and no three of its vertices are collinear. If an edge e
of a triangulation A is swappable, then we can create a new triangulation
by swapping the edge. That is, if vy, - -+, v4 are the vertices of Q). ordered
in the counterclockwise direction, and if e has endpoints v; and vg, then
the swapped edge has endpoints vy and v4. Two vertices in A will be
called neighbors of each other if they are the endpoints of the same edge
in A. Hence, while vi and vs are neighbors in the original triangulation
A, vy and v4 become neighbors in the new triangulation after the edge e
is swapped.

For any given set of sample sites, it is clear that, with the exception of
those that are collinear, there is a triangulation with these sample sites as
its only vertices. Let A be a triangulation associated with the given set V,
and let V be the set of all type-O vertices in A. Set

V=V\Vo.

If u € V, then u and all its neighbors with nondegenerate edges with re-
spect to u must be even-degree vertices with deg(u) > 6. We can see
that, for every interior vertex u with n := deg(u) > 5, there is a swap-
pable edge e € Ey,. Hence, there is at least one vertex u; such that both
/Zu;_juu4; and Zu;_ju;u;4q are less than m. Therefore, the quadrilateral
Q@ = [u;_1,u;,u,41,u] is convex; and hence, the edge [v, v;] is swappable.
Now we are ready to describe our Edge Swapping Algorithm for con-
structing a type-O triangulation A, starting with any triangulation A.

Swapping Algorithm
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Do while (V # 0)

Pick any vertex u in V and consider its neighbors.

Pick any neighbor v of u so that the edge [u, v] is swappable.

Swap [u, v], yielding a new edge [u’, v'].

Form a subset of V by deleting from V all the neighbors w of w’ := u,
v, u’, or v/, with [w, w’] being a nondegenerate edge with respect to
w.

Call this subset V.

Enddo

The new triangulation obtained by applying this Edge Swapping Algo-
rithm is denoted by A. Tt is clear that the triangulations A and A have the
same number of triangles, singular vertices, interior and boundary vertices,
and edges. Hence, it follows that

dim S}(A) = dim S}(A).

A is an optimal triangulation for C' quartic spline space. Combining the
Edge Swapping Algorithm with Theorem 9, we have the following.

THEOREM 0.10

Every finite set V' of sample sites admits an optimal triangulation A, such
that the C' quartic spline space Si(A) has the optimal (fifth) order of ap-
prozimation.

A MATLAB package which applies the Edge Swapping Algorithm to any
triangulation on a finite set of vertices to construct a type-O triangulation
of the sample points is described in [30]. The package includes a main func-
tion swap.m as well as subfunctions consecv.m, delrow.m, findrow.m,
findtri.m, nbors.mand trimesh2.m, a modification of the MATLAB 5.0
function trimesh.m.

The swap program may be used to effectively implement the Edge Swap-
ping Algorithm on any initial triangulation of sample points for which a
triangulation admitting an optimal approximation with C' quartic splines
is desired. Figure 1 shows a triangulation of some scattered sample points
which has been defined in MATLAB using the z and y vectors and the
tri matrix. This triangulation was transformed by swap to the type-O
triangulation in Figure 2 with a single edge swap. The first non-type-O
vertex encountered by swap was located at (25, 15). As the neighbors of
this vertex were considered, the neighbor at (18, 22) was the first one found
to form a swappable edge. The resulting edge swap was sufficient to create
the type-O triangulation in the latter figure.

Recall that the three-directional mesh A" is not optimal for C' quartic
splines. Figure 4 depicts a type-O triangulation resulting from an appli-
cation of swap to the sample AM) in Figure 3. Since swap considers the
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Figure 3. Type-1 triangulation A Figure 4. An Optimal triangulation from A

vertices of the initial triangulation in sequential order, the type-O triangula-
tion returned by swap may be dependent on the order in which the vertices
are defined in the x and y vectors. The result in Figure 5 was achieved by
ordering the vertices from the bottom to the top of each column, beginning
with the leftmost column. Figure 6 depicts a quite different type-O trian-
gulation of this vertex set, where only the direction of the diagonals in the
initial triangulation was changed. This illustrates how the output of swap
on a particular vertex set may be changed, when desirable, by reordering
the vertices or altering the initial triangulation.

0.4 Interpolation and Approximation using C' cubic
and C' quadratic splines

In this section, we would like to discuss some possibilities to find the
optimal triangulation for C' cubic or C' quadratic spline functions, and
also some results on interpolation using cubic or quadratic spline elements.

As we can see from the previous sections that it is de Boor and Hdéllig
who first applied B-net technique in [12] to study approximation order
of C' cubic spline space, there they proved that A" is not optimal for
C' cubic splines. We've also seen that type-2 triangulations [46] and the
triangulated quadrangulations [50] are optimal triangulations for C cubic
splines. From Theorem 6 we know that the type-2 triangulation is also
optimal for C' quadratic splines. In general, the question of how to find
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Figure 5. An Optimal triangulation from A" Figure 6. An Optimal triangulation from A"

an optimal triangulation for the bivariate spline space S} (A) of C' cubic
or C' quadratic is still open and will be a very challenge problem.

It is natural to consider the use of finite elements as interpolant, particu-
larly since there is a large and sophisticated machinery available to handling
them. For a piecewise polynomial interpolant to be differentiable globally,
its polynomial degree must be at least 5 according to [68]. A well-known
technique of reducing that degree, is to subdivide the triangle into three
subtriangles. Splitting a triangle about its centroid into three subtriangles
and letting the polynomial degree be 3 gives rise to the widely used Clough-
Tocher Scheme. Clough-Tocher splits were introduced in [24]. For a given
triangulation A of a set Q, we use Acr to denote the Clough-Tocher (re-
finement) triangulation of A which is formed by connecting the centroid
v, of each triangle 7 in A to the three vertices of 7. We can prove the
following.

THEOREM 0.11
The Clough-Tocher triangulation Acy is optimal for C* cubic spline space
over Acr.

Based on a similar consideration as in [19], we open the following.

Problem 1. Is there any local Clough-Tocher triangulation Ajcr so that
it is optimal for C' cubic spline space over Arcp.

Recall that a mixed three-directional mesh is optimal for C' quartic
splines. It is certainly interesting to obtain a similar result for C' cubic
splines.
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Problem 2. Is there any mixed three-directional mesh being optimal for
C" cubic splines?

An alternative refinement approach is called Powell-Sabin split, which
splits each triangle into six subtriangles. More precisely, we give the fol-
lowing.

DEFINITION 0.6  Given a triangulation A, the Powell-Sabin (refine-
ment) triangulation Apgs is formed by connecting incenters of triangles of
A and also by connecting incenters to central points of boundary edges for
boundary triangles.

It is well-known that Powell-Sabin triangulations can be used to study C"
quadratic splines (see [58]). In [18], some computational schemes and opti-
mization algorithms are introduced for interpolating discrete gridded data
by C' quadratic spline surfaces that preserve the shape characteristics of
the data. Also, some energy functionals are presented there for the charac-
terization of optimal interpolants satisfying the required shape-preservation
criteria.

A non-uniform type-1 (three-directional) mesh, we denote it by Ag\}[)N, is
constructed from a rectangular grid of a rectangular region R = [a, b] X [¢, d],
where

a=x9<---<zTpy=b c=yg<- - <yYyn
by drawing in all northeast diagonals. Similarly, A%N will denote the non-
uniform type-2 triangulation. It has been attracted attentions to represent

scattered data using splines over triangulations A%}I)N and Aﬁ)N. In [65],
the following result was obtained.

THEOREM 0.12

For given data f(vij), fz(vij), i = 0,1,---,n, j = 0,1,---,m; fy(Vin),
;Iy(vi,’n); 1 = 27"'7m; f;(v(],j% f;ly(vl,j)7 .7 = 17"'7”7' and f;(vm,(])y
fy(Vin1), fy(Vo), then there is a unique s € S%(AE\EI)N) satisfies the fol-
lowing interpolation conditions:

v 5e(Vig)) = (f(Vig)s fo(Vig))si = 0,1, n, 5 = 0,1, m;

)
(Vi,n)v Sgy(vi,n)) = (f;(vi,n)v f;ly(vi,n by =200,y
(Vo,5)s 8y (V1,5)) = (£ (vo,j)
(55 (Vim,0) 8y (Vim,1)s 55 (v0,0)) = (fy(Vm.0) f

and also

)
j )a]: 1,"',771;
o (Vim,1), fy(Vo.0)),

If = slleo < Const|A[w(D*f, |A[) + [|D* f][|All,
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where | D* f|| = | fll4,00, and

o f
4 _ . _J
w(D*f,|A]) = maX0§z§4{w(axiay4_i AL}
Many authors have also considered scattered data interpolation using

bivariate splines over Aﬁ\?N. The following results is given by Ye [67] (see
also [66]).

THEOREM 0.13
Let f € C3([a,b] X [c,d]). Then there is a quadratic spline function s €

Si (Aﬁ\?]\,) satisfying

A 2
15 = s < SID AR + B (790 181) 4, (7, 1D

Clearly, these interpolation results are not yet ideal since the order of
approximation is not optimal due to either the triangulation structure or
the interpolation scheme itself. It is interesting to seek both optimal tri-
angulation construction and improving interpolation schemes for optimal
order of approximation.

0.5 Stable local basis and local linear independent ba-
sis

For applications, one is required to construct an efficient scheme to
achieve the full order k£ + 1 of approximation. For this purpose, explicit
bases for the spaces S (A) are set up when k£ > 3r + 2 and an approxima-
tion scheme using such bases to achieve the optimal order of approximation
was discussed in [39]. However, the bases presented there, as well as in [22],
are not stable. For spline space S (A), a basis {B;}¥ of S£(A) is said to
be a local stable basis if each B; is locally supported and there exist two
positive constants C; and Cy, depending only on k£ and the smallest angle
0 of the triangulation A, such that

Z ang

Cy sup|ag| <
£ F;

< Cysup |ag).
‘

o

The construction of a local stable basis of a super spline space S;"*(A)
was presented in [21] (see also [40]). The subspace S;*(A) of super splines
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of smoothness r and degree < k with enhanced smoothness order p > r is
defined as

S (A) ={s € Sp(A): s € C* at each vertex of A}.

In [21], the following result is obtained.

THEOREM 0.14

If k > 3r + 2, then there is stable basis {Bg, ¢ = 1,---,N} with N =
dim(S;(A))}, for S*(A). This basis is also local in the sense that, for
any L, there exists a vertex u such that the support of By

supp B, € St/ ()

where the closed star of a vertex v, denoted by St(v) =: ﬁl(v), is the union
of all the triangles attached to v, and the m-star of v, denoted by Stm(v),

is the union of all triangles that intersect with gm_l(v), m > 1.

The star of a vertex is the set of triangles sharing that vertex. We call
splines supported only on the star of a vertex star-supported splines.
Recently, Alfeld and Schumaker in [6] proved the following.

THEOREM 0.15
Suppose r > 1 and k < 3r + 1. Then there are triangulations A for which
Si(A) does not have a star- supported basis.

The proof of this theorem is based an analysis of spline spaces over a
three-directional mesh.

Here, we can make a very easy argument to show the above theorem.
Noticing a fact that a spline space over A1) will have full order of approx-
imation provided that it has a locally supported basis.

By Theorem 5, the spline space S;(A(l)) cannot have full order of ap-
proximation if k£ < 3r + 1, therefore, it cannot have locally supported basis
and of course, there is no star- supported basis.

Some conjectures were made in [11] on the relations among approxima-
tion order of S} (A), that S;(A) contains elements with local support, and
that S} (A) contains a local partition of unity. Here, local partition of unity
means that a basis {B;} satisfies ", ¢;B; = 1 with B; nonnegative or {B;}
is a local supported basis.

DEFINITION 0.7 A basis {B;}Y ; of S{(A) is said to be locally lin-
early independent (LLI) if for every T € A, the basis splines {B;} are linear
independent on T.
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Local linear independence was first studied for the integer shift of a box
spline (cf. [13], [27], and [45]). Usually, the stability and local linear in-
dependence cannot hold simultaneously. An LLI basis for S} (A) when
k > 3r + 2 were constructed recently in [29]. Using an LLI basis, a Hermite
type interpolation scheme was presented in [28] for S}, (A) , k > 3r+2, that
possesses optimal approximation order in the same sense as in [21]. That
is, the approximation constant does not depend on the geometric structure
of A. The LLI basis construction is different from the B-net approach. The
technique applied in [28] are based on nodal functionals, a common method
in finite-element field, and a so-called “weak interpolation” idea introduced
in [57]. For comparison, we also mention that an alternative proof for the
result of [21] can be found in [51].

0.6 Splines on sphere and natural splines

A special but important and widely encountered problem arises when
the data sites lie on a 2-dimensional surface embedded in R®. The most
important instance of such a surface is a sphere. The problems of fitting
data on sphere arise in many areas, including for example, geophysics and
meteorology where the sphere is taken as a model of the earth. It is of-
ten unsatisfactory to project the surface into the plane. Instead, special
methods have to be designed. Lawson [54], Renka [59], and Nielson and
Ramaraj [56] independently propose schemes based on a triangulation of
the surface of a sphere.

Very recently, the spaces of splines defined on triangulations lying on the
sphere or on sphere-like surfaces have been discussed in [2] — [5]. These
spaces arose out of a new kind of Bernstein-BeZier theory on such surfaces.
A constructive theory for such spline spaces analogous to the well-known
theory of polynomial splines on planar triangulations has been developed.
Formulae for the dimension of such spline spaces, and locally supported
bases for them, are given in [3]. Some applications of such spline spaces to
fit scattered data on sphere-like surfaces are discussed in [5].

For many years people in the Computer Aided Geometric Design (CAGD)
community believed that it was not likely to define barycentric coordinates
on a spherical triangle. However, it was recognized in [4] that in fact there is
a very natural way to define barycentric coordinates with respect to spher-
ical triangles. It was later discovered that the same coordinates had been
introduced and studied by Md&bius more that 100 years ago.

The spherical spline space S;(A) is the analog of the space of splines
defined over a planar triangulation. As in the planar case, it is possible
to identify the dimension of S}, (A) and construct locally supported bases
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for them for all values of k > 3r 4 2, see [3]. As shown in [5], the basic
interpolation problem can solved as following.

THEOREM 0.16
for given real values {f;} , at the scattered points {v;}' , on the unit
sphere S, there is a spline function s defined on S such that

S(Vi):fiv Z:L,Tl

The spherical triangulation A has vertices at the given points and the
interpolant is local in the sense that the restriction of s to a triangle 7
depends only on the data in that triangle.

Here, we need to mention a survey paper [31] of approaches to the inter-
polation and approximation data on the surface of a sphere. The authors
discussed methods based on spherical harmonics, tensor-product spaces on
a rectangular map of the sphere, functions defined over spherical triangu-
lations, spherical splines, etc.

A generalized biharmonic spline interpolation scheme for data over sphere
was given in [34].

Before we discuss scattered data interpolation using bivariate natural
splines, let’s recall the definition of the natural spline in the univariate
setting at first. For points a = x¢ < z; < --- <z, < Tp41 = b and integer
m > 1, we define

Sm(T1, -+ xn) ={s € Cm_l[a,b];s\[wi, | € Tm,i=0,1,---,n}

Tit1

the space of polynomial splines of degree m with n fixed knots =1, -+, z,.

DEFINITION 0.8 A function s € Sory1(21, -+, Ty), wherer > 1, is
called a natural spline of degree 2r + 1 with knots x1,---,x,, if

sV (a) =sD(b) =0, j=r+1,---,2r

Clearly, a natural spline s € So,1(x1, -, 2,) satisfies that s is a poly-
nomial of degree 2r + 1 over each subinterval (x;,z;41) fori=1,---,n—1,
a polynomial of degree r over subintervals [a,z;) and (x,,b], and that
s € C%a,b).

Given a function f € Cla,b], the natural spline interpolation problem is
to determine a natural spline s € Sy, 1(x1,-+,2,), r > 1, such that

s(x;) = flzy), i=1,--+,n.

It is well-known that if » > r — 1, then the natural spline interpolation
problem has a unique solution from So,y1(21,-,2,). Furthermore, we
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have the following optimality properties for the natural interpolating spline
function.

THEOREM 0.17

Letn >r—1, f € C""a,b] and s € Sg,y1(w1,-,2,) be the unique
solution of the corresponding natural spline interpolation problem. Then
for any natural spline s € Sy, 41(x1,- -, x,), we have

(a)

||f(r+1) _ S(T+1)H2 < Hf(r+1) _ §(7+1)H2‘

The equality holds if and only if s — s € m,.
(b) fO’l” any p € If = {u € CT+1[a’b}; U(IZ) = f(xz)’ 1= 17 e 777‘},'

||S(r+1) _ §(7+1)H2 < Hlu(r+1) _ E{TH)HQ'

Let Q = [a,b] and
d iy
; dxr+1

where AC(Q) is the space of absolutely continuous functions over Q. From
the property (b) in Theorem 17, if we choose 5 = 0, we obtain

L2(Q)7 da_u € AC(Q)? a = 0,"',7"},

dz®

X = H™(Q) = {u(x)

[E PR 1 P

for any p € Iy. Therefore, a natural polynomial spline is the solution of the
following problem: given a function f € Cla,b], find a function s(x) € X
satisfying the interpolation conditions:

and

/b(s(r+1)(x))2dx = min /b(u(r+1)(x))2dx.

uEIf
Let Y := L?(Q) and t : X — Y a linear operator defined by
~d ()
o dxr+1
Let Z := R" be the N dimensional Euclidean space and A4 : X +— Z an
interpolation operator defined by

Au = (u(z1),- -, u(zy)).

Laurent [53] considered the following spline interpolation problem in the
Hilbert space H"1(Q): for a given N scattered data values {(z;, f(z;)), =
1,---, N}, find a function s(z) € X such that

t(u) = u'"D ()

t 2 — M t 2
()12 = min [[£(w)l]z,
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where y = (f(z1), -, f(zn)) and I, = {v € X; Au = y}. The solution to
this problem is also called a natural spline.

This natural spline interpolation problem in Hilbert space can be ex-
tended to the higher dimensional settings. For R = [a,b] X [c,d], let
X := H™*(R) denote the space

ar+su ) aa+ﬂu
{u(z,y); o270y € (R),W €

where AC(R) is the space of absolutely continuous functions over R. Let
s—1 r—1
Y = L*R) x [ L?[a,b] x [] L*[c.d]
v=0 n=0

and T : X — Y be a linear operator defined by

s—1 r—1
T=tox [t < [T,
v=0 pn=0

where
O Tsu(zx,
to(u) = ")) = L A,
v
) _ (r,v) — 0 u(%y) _ 1
t77 () = u'"(z,c) —6x58y’/ ly—c, v=0,...,5 —1;
s+
(1) _ o, (s,) _ 0 u(xﬂy) o -
t" (u) = u'* (a,y) = ey lo—a, 0 =0,...,7 — 1.

Let Z=TR"Y and A: X — Z be an interpolation operator defined by

Au = (u(z1,91), -, w(T N, YN))-

Li and Guan [55] studied such a natural polynomial splines interpola-
tion problem: given N scattered data points and values {(x;,v;,2:),i =
1,---, N}, find a function o(z,y) € X satisfying

|To|* = min{||Tul|*,uv € X, Au = 2},

where, z = (z1,---,2zy) and

n—1 b
WW:/LWW@M%W+Z/WWW@W%
y=0va

r—1 d
+Z/WWMmWy
p=0"¢

AC(R),a=0,---,r—1, 3=0,---,5—1},
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The solution of this bivariate polynomial natural spline interpolation prob-
lem in Hilbert spaces H™*(R) is called a bivariate polynomial natural spline.

The following results are obtained by Li and Guan in [55] (see also [17])
to study the null space of the operator T and to give a closed form of the
bivariate natural spline function.

THEOREM 0.18
The null subspace of the operator T is

r—1s5—1

N(T) = P(r,s) = {w;u(z,y) = ZZcmxy ¢i; € R}.

1=0 5=0

THEOREM 0.19
Bivariate natural polynomial spline o(x,y) has the following explicit and
closed-form expression:

r—1s—1

ZAzgz 1‘ y +chwxy

=0 j=0
where g;(z,y) = G(xs,yi;2,y),i = 1,--+,N are (2r — 1,2s — 1) natural
spline basis functions and

R

T S(t
Gltmsey) = () o e

+

s—1 . (t _ x)2771( _ C)l/ T — C)V . T — 0)23—1/—1
;)(_1) (2:— 1)?1/! {( v (=1) ((25 —v—1) } +
r—1 2s5—1 ——

o ( ) (117 ) (tia)u s rfu(tia)?r ul
2.1 (25 —1)l! { ! 1) (27‘—M—1)!}

They also extended the results to general k-dimension setting [17]. Guan
[36] considered bivariate natural polynomial splines for smoothing or gen-
eralized interpolating of scattered data. In [37], a locally supported basis
of bivariate natural polynomial splines were constructed. Recently, Guan
and Hong in [38] constructed a locally supported basis of bivariate natural
polynomial splines for scattered data on some lines (or for refinement grid
points) to address a problem mentioned in [64]. For scattered data in a
triangle, there were some similar discussions in [35] comparing with the
spline interpolations over triangulations .
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