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Abstract. In proteomics study, Imaging Mass Spectrometry (IMS) is an emerging and very promis-
ing new technique for protein analysis from intact biological tissues. Though it has shown great
potential and is very promising for rapid mapping of protein localization and the detection of size-
able differences in protein expression, challenges remain in data processing due to the difficulty of
high dimensionality and the fact that the number of input variables in prediction model is signifi-
cantly larger than the number of observations. To obtain a complete overview of IMS data and find
trace features based on both spectral and spatial patterns, one faces a global optimization problem.
In this paper, we propose a weighted elastic net (WEN) model based on IMS data processing needs
of using both the spectral and spatial information for biomarker selection and classification. Prop-
erties including variable selection accuracy of the WEN model are discussed. Experimental IMS
data analysis results show that such a model not only reduces the number of side features but also
helps new biomarkers discovery.

Key words: biomarker discovery, weighted elastic-net, mass spectrometry imaging, penalized
regression, variable selection
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1. Introduction
Proteomics is the study of, and the search for, information about proteins. It is much more difficult
than genomics primarily due to the highly complex cellular proteomes and the low abundance of
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many of the proteins, and thus requires more sensitive analytical techniques. The development
of mass spectrometry (MS), such as matrix-assisted laser desorption ionization (MALDI) time-
of-flight (TOF) MS, surface-enhanced laser desorption/ionization (SELDI) TOF MS, and imaging
mass spectrometry (IMS), greatly speeds up proteomics research. MALDI-Imaging, in particular
developed from the well-established single-cell detection techniques MALDI-TOF, is an emerging
and promising new technique for protein analysis from intact biological tissues [2]. It measures a
large collection of mass spectra spreading out over an organic tissue section and retains the absolute
spatial information of the measurements for analysis and imaging. IMS has its unique advantages
in discovering biomarkers. A profiling strategy by manually spotting matrix on predefined areas of
interest is often biased by design because it requires manual intervention and only a fragmentary
analysis of the tissue at low spatial resolution can be obtained. However, IMS, by the automatic
spotting of matrix on the tissue in an array format, results in comprehensive structural analysis at
a higher spatial resolution and also saves time. Another clear advantage is the imaging strategy is
to go further into structure or morphological detail [23].

IMS data have very high dimensions. Each data set generated by IMS has two spatial dimen-
sions and ion intensities along the mass-over-charge (m/z) dimension. As an example, Figure
1(a) shows the stained mouse brain section implanted with a GL26 glioma cell line. The darker
region indicates the tumor area. IMS data can be viewed as a three-mode array with two spatial
dimensions (x-, y- dimension) and the ion intensity values associated with m/z dimension (z-
dimension) as shown in Figure 1(b). Behind every pixel is an entire individual mass spectrum
shown in Figure 1(c) ranging from 2k to 70k Dalton in our data set. This in itself is a challenge
for data processing, but it is further compounded by the low signal intensities found across the
image. Figure 1(d) is the visualization of IMS data represented as a data cube. The x-, y- and z-
axes are the same as in Figure 1(b). Five spatial distribution graphs are also shown in Figure 1(d)
corresponding to five selected m/z values. Each spatial distribution graph gives an ion intensity
distribution image with a false color visualization of the spatial distribution of peak height for a
corresponding m/z value. To fully utilize IMS data, it is desirable to not only identify the peaks
of the spectrum within individual pixels, but also to preserve the spatial information for the whole
images. The combination of spatial and mass resolution results in large and complex data sets that
gives a great challenge to the quantitative analysis and interpretation tools. Conventional images,
derived from a specific analyte mass, do not identify the spatially localized correlations between
analytes that are latent in IMS data processing.

The application of multivariate analysis (MVA) methods has opened new doors for the explo-
ration of IMS data. Most of MVA methods work towards one central task of summarizing the
variance patterns within a dataset. The IMS community has begun exploring and comparing these
MVA methods but few guidelines have been established for data pre-processing before these MVA
methods are applied [9]. A newly developed variable selection method [32], called elastic net (EN),
can simultaneously perform automatic variable selection and continuous shrinkage, as well as se-
lect groups of correlated variables. Compared to other current commonly used analysis methods,
the EN model is much more suitable for IMS data processing. The EN model enjoys a sparsity of
representation, which is particularly useful when the number of predictors (p) is much larger than
the number of observations (n), and also encourages a grouping effect, where strongly correlated
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Figure 1: Mouse brain IMS Data.

predictors tend to be in or out of the model together. In this paper, we construct a weighted elas-
tic net (WEN) model for predicting variable selection based on the consideration of both spectral
and spatial information of IMS data and develop a new tool for IMS data feature selection and
classification. The WEN model fully utilizes not only the spectral information within individual
pixels but also the spatial information for the whole images. Properties of WEN model such as the
variable selection accuracy are discussed. The WEN algorithm is applied to an IMS data set for
predictor selection. The analysis results showed that the WEN method works efficiently and effec-
tively for IMS data processing. A set of biomarkers has been identified with interesting biological
explanations.

The remainder of the paper is organized as follows: In Section 2, penalized feature selection
models such as Lasso, bridge and ridge regression, elastic net, and adaptive Lasso models are
briefly reviewed together with the conditions for variable selection consistency. The weighted
elastic net model is then introduced and theoretically studied on its variable selection accuracy in
Section 3. In Section 4, we present the WEN algorithm and its application to an IMS data set for
predictors selection.
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2. Sparse Representation Models
Two fundamental criteria for evaluating the quality of a model in statistical modeling are high pre-
diction accuracy and discovering relevant predictive variables. In the practice of statistical model-
ing, variable selection is especially important; it is often desirable to have an accuracy predictive
model with a sparse representation since modern data sets are usually high dimensional with a large
number of predictors. One would like to have a simple model to enlighten the relationship between
the response and covariates and also to predict future data as accurate as possible. Let us con-
sider a multiple linear regression model with n observations. Suppose that xj = (x1j, · · · , xnj)

T ,
j = 1, · · · , p are the linear independent predictors and y = (y1, · · · , yn)T is the response vector.
X = [x1, · · · ,xp] denotes the predictor matrix. If the data are centered, then the linear regression
model can be expressed as

y = Xβ + ε, (2.1)

where β = (β1, · · · , βp)
T and the noise term ε ∼ N(0, σ2In). A model fitting procedure produces

the vector of coefficients β = (β0, . . . , βp)
T .

Ordinary least squares (OLS) estimates are obtained by minimizing the residual sum of squares
(RSS). It is well known that OLS does poorly in both prediction and variable selection. Penalized
methods have been proposed to improve OLS, starting with Ridge regression [12], followed by
Bridge regression [7], the Garotte [1], the Lasso [25], LARS [5], and very recently the elastic
net [32]. The Dantzig selector method was proposed in [4] by using sparse approximation and
compressive sensing. It was designed for linear regression models where p is large but the vector
of coefficients is sparse, Its `1-minimization produces coefficient estimates that are exactly 0 in a
similar fashion to the Lasso [15] and hence can be used as a variable selection tool.

Penalization methods achieve feature selection and classifier construction simultaneously by
computing β̂, estimate of β that minimizes a penalized objective function. By properly tuned
penalties, estimated β can have components exactly equal to zero and thus achieve the sparsity
needed. Therefore, feature selection is achieved in the sense that only variables with nonzero
coefficients will be used in the classification model. Specifically, here we define β̂ as

β̂ = argminβ{
1

2
‖y −Xβ‖2

2 + λ pen(β)} (2.2)

The penalty pen(β) in (2.2) controls the complexity of the model. Here pen(β) could be the
ridge penalty, Lasso penalty, elastic net penalty and any other appropriate penalty function. The
tuning parameter λ > 0 balances the goodness-of-fit and complexity of the model. As λ → 0,
the model has better goodness-of-fit. However, this may cause classifiers to be too complex with
unsatisfactory prediction and thus less interpretable. As λ → ∞, the classifier is the simplest one
with no input variable used for classification [19]. With proper tuning parameter λ, the classifier
can have satisfactory prediction accuracy and is interpretable. When only training data are avail-
able, tenfold cross validation (CV) is a popular method to estimate the tuning parameter λ, the
prediction error and comparing different models ([11], chapter 7). Work is still needed to inves-
tigate and compare model selection methods including Cp, Akaike information criterion (AIC),
Bayesian Information Criterion (BIC), CV and empirical Bayes.

118



D. Hong and F. Zhang Weighted elastic net model

For the linear regression model (2.1), one would like to recover the sparse parameter β ∈ Rp.
Assume S = supp(β∗) = {j : β∗j 6= 0}, the support set of β∗, and let s = |S|. The set S sometimes
is called the active index set. We also denote Sc = {1, · · · , p} \S and correspondingly the vectors
(matrices) βS and βSc (XS and XSc) defined on S and Sc, respectively.

The importance of the oracle property of the learning model is emphasized in [6]. This ensures
the model has good statistical properties, that the model can correctly select the nonzero coeffi-
cients with probability converging to one and that the estimators of the nonzero coefficients are
asymptotically normal with the same mean and covariance that they would have if the zero coef-
ficients were known in advance. We call the estimating procedure δ an oracle procedure if β̂(δ)
(asymptotically) has the following oracle properties:

(1) Identifies the right subset model, {j : β̂j 6= 0} = S

(2) Has the optimal estimate rate,
√

n(β̂(δ)S − β∗S) →d N(0,C), where C is the covariance
matrix knowing the true subset model.

Usually, we call property-(1) the consistency in variable selection and property-(2) the asymp-
totic normality.

The Ridge penalty is defined as

pen(β) =

p∑
j=1

β2
j . (2.3)

Ridge Regression minimizes RSS subject to a bound on the `2 norm of the coefficients. It projects
y onto these singular values of X and then shrinks the coefficients of the low-variance components
more than the high-variance components. Although it is continuous shrinkage, ridge regression
always keeps all the predictors in the model and thus does not have the sparse representation for
input data. Subset selection in contrast produces a sparse model, but it is a discrete process -
variables are either retained or discarded. Thus, it often exhibits high variance and does not reduce
the prediction error of the full model [11].

Lasso is a regularization technique for simultaneous estimation and variable selection [25]. The
Lasso penalty is defined as

pen(β) =
P∑

j=1

|βj|. (2.4)

Lasso minimizes RSS subject to a bound on the `1 norm of the coefficients. Due to the nature of the
`1 penalty, Lasso does both continuous shrinkage and automatic variable selection simultaneously.
Generally, Lasso is not variable selection consistent in the sense that the whole Lasso path may
not contain the true model. Recent research results ([29], [31], [22], [26]) have been focused
on the model selection consistency of the Lasso. The condition for the Lasso’s model selection
consistency by using a so-called the Irrepresentable Condition (IC) was studied in [29] for the
classical case when p and s (the number of nonzero coefficients associated with the predictors in
the model) are fixed.

For a given estimator β̂, one would like to have supp(β̂) = supp(β∗) with high probability.
More precisely, we want

sgn(β̂) = sgn(β∗), with high probability.
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This question was recently considered in [30]for the adaptive Lasso model. In the following, we
would like to address this problem on weighted elastic net model.

We assume that
1

n
XTX → C, (2.5)

where C is a positive definite matrix. Without loss of generality, let

C =

[
C1 1 C1 2

C2 1 C2 2

]
, (2.6)

where C1 1 = XT
SXS is an s× s matrix corresponding to the covariance matrix on the active index

set S.
A so-called irrepresentable condition (IC) states that there exists a positive constant η > 0 such

that
‖C21C

−1
11 sgn(βS)‖∞ ≤ 1− η (2.7)

where the inequality holds element-wise. IC is necessary and sufficient for the Lasso’s model
selection consistency [29].

To improve the Lasso model, the adaptive Lasso was proposed in [31] by using a weighted `1

penalty.

pen(β) =

p∑
j=1

ω̂j|βj|, (2.8)

where ω̂j = 1/|β̂j|γ for an initial estimator β̂ and a power γ > 0. By adding such weights to
the coefficients, adaptive Lasso enjoys the oracle properties for linear models with n À p. For
the case where p À n, Lasso can still be variable selection consistent under certain orthogonality
conditions [14]. More general situations for Lasso based models to be consistent were recently
studied in [30].

If the number of predictors, p, is greater than the sample size, n, Lasso selects at most n
variables. Therefore, the number of selected features is bounded by the number of samples. In
addition, Lasso fails to conduct grouped selection. That is, it tends to select one variable from a
group and ignores the others. However elastic net [32], a convex combination of the lasso and
ridge penalty, usually outperforms them in many situations. The EN penalty term with coefficients
is defined as

pen(β) = λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j . (2.9)

The EN method is particularly useful when p À n. The group effect is like a stretchable fishing
net that retains “all the big fish” [32]. In high-dimensional data analysis, the number of variables
can greatly exceed the number of observations, and strong correlations often exist among subsets
of variables. This is the case for IMS data and thus we choose to develop a statistical model based
on elastic net for IMS data processing.

A necessary and sufficient condition for the elastic net to be variable selection consistent in the
classical settings when p and s are fixed is given in [26]. Corresponding to the IC condition, the
Elastic Irrepresentable condition (EIC) is defined as
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EIC: There exists λ1, λ2 and a positive constant η > 0 such that

‖C21(C11 +
λ2

n
I)−1(sgn(βS) +

2λ2

λ1

βS)‖∞ ≤ 1− η. (2.10)

EIC is necessary and sufficient for the EN model selection consistency [26]. The model selec-
tion consistency of the EN model for p À n case and the relationship of IC and EIC was discussed
in [16]. IC implies EIC, but EIC does not imply IC. In order to achieve the oracle property, the
following adaptive elastic net by combining adaptive `1 penalty and ridge penalty was proposed
[31].

β̂ = (1 +
λ2

n
){argminβ‖y −Xβ‖2

2 + λ2‖β‖2
2 + λ∗1Σ

p
j=1ω̂j|βj|} (2.11)

where ω̂j = 1/|βj|γ for γ > 0.
The so-called Bridge penalty is defined as

pen(β) =

p∑
j=1

|βj|γ, γ > 0. (2.12)

The `1 Lasso penalty is a special case of the bridge penalty where γ = 1. Also, the `2 ridge penalty
is a special case where γ = 2. When 0 < γ ≤ 1, some components of the estimator minimizing
(2.2) can be exactly zero if λ is sufficiently large [17]. For linear models with n À p and γ < 1,
bridge penalty is consistent in variable selection. For the high dimension case where n ¿ p and
γ < 1, the bridge can still be consistent if the features associated with the phenotype and those not
associated with the phenotype are only weakly correlated [14].

In applications, it is very common that n ¿ p because of the time and cost constraints in
collecting samples. The EN model will be an ideal choice for feature selection. However, the
elastic net model forces the coefficients to be equally penalized in the penalty terms. We can
certainly assign different weights to different coefficients. This makes a great deal of sense in the
biomarker selection from the IMS data sets.

In the next section, we propose a so-called weighted EN model to meet the needs in IMS data
processing by considering both the spectral and spatial information of the data sets. Compared
to the adaptive EN model (2.11), the WEN methods choose standard deviations as the weight
coefficients associated with the estimators for practical applications. We study the variable selec-
tion accuracy for the WEN model in the next section as well. The model provides a data driven
method and is easy to implement. The results of applying our algorithm to real data collected from
biological experiments are satisfactory.

3. Weighted Elastic Net Model
In IMS data analysis, if a biomarker in terms of an m/z value in the MS spectrum is truly related
to a cancer disease, then it is reasonable to expect that the ion intensity values at this m/z from
different pixel locations in a cancer area are approximate the same. Therefore, the standard devia-
tion of the intensities at the m/z should be small. In comparison, if the biomarker selected by the
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statistical model based on differentiation mainly caused by the tissue structure, then the ion inten-
sities at the m/z point vary significantly from pixel to pixel. Therefore, the standard deviation of
intensities at such an m/z point should be relatively large. Thus, it is proper to associate standard
deviations at each predictor to the coefficient in the model to enforce penalty on predictors caused
by structure differences. In a very recent work [27], the standard deviations of ion intensity at each
m/z point have been combined with elastic net model in the tenfold cross validation (CV) step
to select the tuning parameter step k. To better consider the spatial information for more precise
biomarker selection, we propose the following weighted elastic net (WEN) model:

argminβ

1

2
‖y −

p∑
j=1

xjβj‖2
2 + nλ1

p∑
j=1

wj|βj|+ n

2
λ2

p∑
j=1

|wjβj|2, (3.1)

where wj > 0, j = 1, · · · , p are weighted penalty coefficients. Let W = diag[w1, · · · , wp]. Then
the WEN model can be rewritten as

argminβ

1

2
‖y −Xβ‖2

2 + nλ1‖Wβ‖1 +
n

2
λ2‖Wβ‖2

2. (3.2)

Let us first consider the variable selection accuracy of the WEN model. Results of applying the
algorithm will be given in the next section.

Let β̂ and β∗ denote the estimator and the true parameter vector in the linear regression model
(3.1), respectively. We would like to first study necessary and sufficient conditions for sgn(β̂) =
sgn(β∗).

To find a solution in nonlinear programming of the optimization problem (3.1), we first check
its Kauush-Kuhn-Tucker (KKT) conditions, a generalization of the method of Lagrange multipliers
to inequality constraints. We found that the KKT conditions of the WEN model are equivalent to

xT
j (y −Xβ̂)− nλ2w

2
j β̂j = λ1 nwjsgn(β∗j ), if β̂j 6= 0; (3.3)

|xT
j (y −Xβ̂)| ≤ λ1 nwj, otherwise, (3.4)

for any j = 1, · · · , p.
Let bj = wjsgn(β∗j ) and b = WSsgn(β∗S). Define the set

Z = {z ∈ Rp; zj = bj for β̂j 6= 0, and |zj| ≤ wj, otherwise}. (3.5)

Then, conditions (3.3) and (3.4) are equivalent to saying that there exists a subgradient vector
g ∈ Z such that its components gj, j = 1, · · · , p, satisfy

−xT
j (y −Xβ̂) + nλ2w

2
j β̂j + nλ1gj = 0. (3.6)

Substituting y = Xβ∗ + ε in (3.6), we obtain

xT
j X(β̂ − β∗)− xT

j ε + nλ2w
2
j β̂j + nλ1gj = 0.
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Equivalently, we have:

C(β̂ − β∗)− 1

n
xT

j ε + λ2w
2
j β̂j + λ1gj = 0. (3.7)

Then, we see that for given X, β∗, and λ1 > 0, λ2 > 0, sgn(β̂) = sgn(β∗) holds if and only if
(i) there exists a point β̂ ∈ Rp and a subgradient g ∈ Z such that (3.7) holds and
(ii) sgn(β̂S) = sgn(β∗S) and β̂Sc = β∗Sc = 0 implies that gS = b and |gj| ≤ wj for j ∈ Sc.

Lemma 1. Assume that the weight coefficients wj > 0 for j = 1, · · · , p and C11 is invertible.
Then there is a solution β̂ for the weighted elastic net such that

sgn(β̂) = sgn(β∗)

if and only if the following conditions hold:

|xT
j XS[(C11 + λ2W

2)−1(C11β
∗
S +

XT
S ε

n
− λ1b)− β∗S]− xT

j ε

n
| ≤ λ1wj, for j ∈ Sc, (∗)

and

sgn((C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)) = sgn(β∗S). (∗∗)

Proof. Recall that y = Xβ∗ + ε, W = diag[w1, · · · , wp], and b = WSsgn(β∗S). Substituting
β̂Sc = β∗Sc = 0 and gS = b in (3.7), we obtain

C21(β̂S − β∗)− XT
Sc

ε

n
= −λ1gSc , (3.8)

C11(β̂S − β∗)− XT
S ε

n
+ λ2W

2β̂S = −λ1gS = −λ1b, (3.9)

and also
sgn(β̂S) = sgn(β∗) and β̂Sc = β∗Sc = 0. (3.10)

From (3.8) and (3.9), solving for β̂S and gSc , we obtain

β̂S = (C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b), (3.11)

and

−λ1gSc = C21[(C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)− β∗S]− XT

Sc
ε

n
. (3.12)

Therefore, for j ∈ Sc,

|xT
j XS[(C11 + λ2W

2)−1(C11β
∗
S +

XT
S ε

n
− λ1b)− β∗S]− XT

j ε

n
| = | − λ1gj| ≤ λ1wj, (3.13)
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and

sgn(β̂S) = sgn((C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)) = sgn(β∗S). (3.14)

This proves the lemma in one direction. To prove the reverse direction, we assume the conditions
(*) and (**) in the lemma hold for some λ1 > 0 and λ2 > 0, and thus we can construct an estimator
β̂ ∈ Rp by letting β̂Sc = β∗Sc = 0 and

β̂S = [(C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)]

which guarantees sgn(β̂S) = sgn(β∗S) by the condition (**). We can also construct g by letting
gS = b and

gSc =
−1

λ1

{C21[(C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)− β∗S]− XT

Sc
ε

n
}

which guarantees that |gj| ≤ wj for j ∈ Sc due to the condition (*). Therefore, there exists a
parameter vector β̂ ∈ Rp and a subgradient g ∈ Z such that sgn(β̂) = sgn(β∗) and equations
(3.12) and (3.11) are satisfied. This completes the proof of the lemma.

To state and prove the main theorem of this section, we follow the notations defined in [30].
Let ej = Rs be the vector with one in the jth position and zero elsewhere. Then ‖ej‖ = 1. We
define probability event sets E(U) and E(V ) relevant to the conditions of (*) and (**) in Lemma 1
as follows.

For j ∈ Sc,

Vj = xT
j XS[β∗S − (C11 + λ2W

2)−1(C11β
∗
S − λ1b)] + xT

j (In×n −XS(C11 + λ2W
2)−1XT

S )
ε

n
.

Then the condition (*) in Lemma 1 holds if and only if it is true for the event

E(V ) = {Vj; j ∈ Sc, |Vj| ≤ λ1wj}. (3.15)

Since

β̂S = (C11 + λ2W
2)−1(C11β

∗
S +

XT
S ε

n
− λ1b)

for j ∈ S, we define

Uj = eT
j (C11 + λ2W

2)−1(
XT

S ε

n
− λ2W

2β∗S − λ1b).

Therefore, we have that the condition (**) in Lemma 1 holds if the following event is true:

E(U) = {Uj; j ∈ S, max
i∈S

|Uj| ≤ βmin}, (3.16)

where βmin = minj∈S|βj|.
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For a symmetric matrix A, Λmin(A) denotes the smallest eigenvalue of A. We assume there
exists some constant λ0 such that

Λmin(C) ≥ λ0 > 0.

Furthermore, we assume that the `2-norm of each column of the predictor matrix X is bounded
above by c0

√
n for some constant c0 > 0.

Define a probability event set

T = {XT ε; ‖X
T ε

n
‖∞ ≤ c0σ

√
6 log p

n
},

here we let c0 = maxj∈Sc ‖Xj‖2/
√

n. From known results on inequalities on matrix norms and
the assumption that Λmin(C11) ≥ λ0 > 0, we know that

‖(C11 + λ2W
2)−1‖∞ ≤ √

s‖(C11 + λ2W
2)−1‖2 =

√
s

Λmin(C11 + λ2W2)
≤
√

s

λ0

since Λmin(C11 + λ2W
2) ≥ Λmin(C11) ≥ λ0. Therefore, by using the triangle inequality, we

obtain

max
j∈S

|Uj| ≤ ‖(C11 + λ2W
2)−1‖∞‖X

T ε

n
‖∞ + ‖(C11 + λ2W

2)−1‖∞‖λ2W
2β∗S + λ1b‖∞.

Let β∗max = max |β∗j |, wmax(S) = maxj∈S wj . We have that

‖λ2W
2β∗S+λ1b‖∞ = max

j∈S
(λ2w

2
j |β∗j |+λ1wj) ≤ λ2w

2
jβ

∗
max+λ1wj ≤ λ2w

2
max(S)β∗max+λ1wmax(S).

From the assumption that

βmin > max{4c0σ

λ0

√
6s log p

n
,
2(λ2w

2
max(S)β∗max + λ1wmax(S))

√
s

λ0

},

we have that √
s

λ0

(c0σ

√
24 log p

n
+ λ2w

2
max(S)β∗max + λ1wmax(S)) < βmin.

Thus, we obtain

max
j∈S

|Uj| ≤ ‖(C11 + λ2W
2)−1‖∞‖XT ε

n
‖∞ + ‖(C11 + λ2W

2)−1‖∞‖λ2W
2β∗S + λ1b‖∞

≤
√

s

λ0

(c0σ

√
24 log p

n
+ λ2w

2
max(S)β∗max + λ1wmax(S)) < βmin.

Therefore, we have shown that j ∈ T implies j ∈ E(U). Hence P [E(U)c] ≤ P [T c] ≤ 1/p2

according to Lemma 9.1 in [30]. Thus, the event E(U) in (3.16) holds on the set T .
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Vj in (3.15) is a function of ε, thus, a random variable. Its expected value

µj = E[Vj] = xT
j XS(C11 + λ2W

2)−1λ1b + xT
j XS[β∗S − (C11 + λ2W

2)−1C11β
∗
S]

= xT
j XS(C11 + λ2W

2)−1λ1b + xT
j XS(C11 + λ2W

2)−1[(C11 + λ2W
2)β∗S −C11β

∗]

= xT
j XS(C11 + λ2W

2)−1[λ1b + λ2W
2β∗S]

= λ1x
T
j XS(C11 + λ2W

2)−1[b +
λ2W

2

λ1

β∗S].

Assume for any j ∈ Sc, there exists η ∈ (0, 1), such that

|xT
j XS(C11 + λ2W

2)−1[b +
λ2W

2

λ1

β∗S]| ≤ wj(1− η).

Then, |µj| ≤ λ1wj(1− η).
Define

Ṽj = xT
j (In×n −XS(C11 + λ2W

2)−1XT
S )

ε

n
, j ∈ Sc,

which is a zero-mean Gaussian random variable with variance

Var(Ṽj) =
σ

n2
xT

j [(In×n −P)(In×n −P)T ]xj ≤ σ2

n2
‖xj‖2

2 ≤
σ2c2

0

n
,

where P = XS(C11 + λ2W
2)−1XT

S .
By using singular value decomposition, we can show that ‖I − P‖2 ≤ 1. Then, by using the

tail bound for a Gaussian random variable, the probability value

Prob[|Ṽj| ≥ t] ≤

√
V ar(Ṽj)

t
exp(

−t2

2V ar(Ṽj)
) ≤ σc0√

nt
exp(

−nt2

2σ2c2
0

)

with

t =
ηλ1wmin(S

c)

2
≥ 2c0σ

√
2 log(p− s)

n
.

where wmin(S
c) = minj∈Sc wj .

We then obtain

Prob

[
max
j∈Sc

|Ṽj| ≥ ηλ1wmin(S
c)

2

]
≤ 1

2(p− s)3
√

2 log(p− s)
.

Thus with probability at least 1− 1
2(p−s)3

, we have for ∀j ∈ Sc,

|Vj| ≤ |µj|+ |Ṽj| ≤ λ1wj(1− η) +
ηλ1wmin(S

c)

2
≤ λ1wj(1− η/2) < λ1ωj.

Therefore, the probability of the event E(V )c is at most 1
2(p−s)3

and thus less than 1
p2 for s < p.

Now we are ready to prove the following main result of this paper.
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Theorem 2. For 0 < η < 1, if the predictor matrix X satisfies

∀j ∈ Sc, |xT
j XS(C11 + λ2W

2)−1[b +
λ2W

2

λ1

β∗S]| ≤ wj(1− η)

and
Λmin(C11) ≥ λ0 > 0.

Where λ0 is a constant value. Let c0 = maxj∈Sc ‖xj‖2/
√

n. Suppose wj > 0 for j = 1, · · · , p,
wmin(S

c) = minj∈Sc wj , wmax(S) = maxj∈S wj , and λ1 is chosen such that

λ1wmin(S
c) ≥ 4c0σ

η

√
2 log(p− s)

n
.

Assume

βmin > max{4c0σ

λ0

√
6s log p

n
,
2(λ2w

2
max(S)β∗max + λ1wmax(S))

√
s

λ0

},

where β∗max = max |β∗i |. Then for the β̂ in (3.1), the probability

P [sgn(β̂) = sgn(β∗)] ≥ 1− 2

p2
.

Proof. According to Lemma 1, sgn(β̂) = sgn(β∗) if and only if conditions (*) and (**) hold. On
the other hand, under the assumptions of this theorem, the condition (*) in Lemma 1 holds if the
event E(V ) is true and the condition (*) holds if the event E(U) is true. Therefore,

Prob[sgn(β̂) = sgn(β∗)] ≥ 1− Prob[E(U)c ∪ E(V )c] ≥ 1− 2

p2
.

This completes the proof.

4. Algorithm and Experimental Results
In this section, we develop an algorithm for the WEN method based on the algorithm LARS [5]. It
turns out that the minimizing problem in WEN model (4.1) could be transformed into an equivalent
weighted Lasso-type optimization problem (4.2) on augmented data and then it can be even further
equivalent to a Lasso-type optimization problem (4.3). This fact implies that WEN also enjoys the
computational advantage of the Lasso. Experimental IMS data analysis results show that WEN
model not only reduces the number of side features but also helps new biomarkers discovery.
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4.1. WEN Algorithm
Recall the WEN model (3.1), with a scaled coefficient difference, we can rewrite it as:

f(λ1, λ2, ω, β) = ‖y −
p∑

j=1

xjβj‖2
2 + λ1

p∑
j=1

wj|βj|+ λ2

p∑
j=1

|wjβj|2, (4.1)

where wj > 0, j = 1, · · · , p are weighted penalty coefficients.
Let y∗(n+p) =

(
y
o

)
, X∗

(n+p)×p = (1 + λ2)
−1/2

(
X√
λ2W

)
, γ = λ1√

1+λ2
, and β∗ =

√
1 + λ2β. Then

f(λ1, λ2, ω, β) = ‖
(
y

0

)
−

(
X√
λ2W

)
1√

1 + λ2

√
1 + λ2 β‖2

2 +
λ1√

1 + λ2

wj

√
1 + λ2|βj|

= ‖y∗ −
∑

x∗jβ
∗
j ‖2

2 + γΣjwj|β∗j |

= ‖y∗ −
∑ x∗j

wj

β∗j wj‖2
2 + γΣwj|β∗j | (4.2)

= g(γ,W, β)

Define β∗∗j = wjβ
∗
j and x∗∗j =

x∗j
wj

. Then,

g(γ,W, β) = |y∗ −
∑

x∗∗j β∗∗j |2 + γΣ|β∗∗j |. (4.3)

For a fixed λ2, the weighted EN optimization problem is equivalent to a weighted lasso problem
on an augmented data set and, further, it can be transformed into a lasso problem. We therefore
develop algorithm LARS-WEN based on the LARS algorithm to create the entire solution path.
In the WEN model, there are two tuning parameters λ1, λ2. Typically, the tuning parameter λ2 is
picked as a relatively small grid, say (0, 0.01, 0.1, 1, 10, 100). For each λ2 , algorithm LARS-WEN
produces all possible WEN estimates of the vector for the IMS data. We just want a single optimal
β∗; thus, some rules for selecting among the possibilities are needed. When only training data
are available, tenfold cross validation is a popular method for estimating the prediction error and
comparing different models ([11], chapter 7). In our algorithm, the other tuning parameter λ1 or
say step k is selected by tenfold CV. The pseudo code for LARS-WEN is listed below.

Algorithm (LARS-WEN)
1. Input predictor matrix X of covariate vectors xj , the response vector y and weight coefficients
wj . Set β̂ = 0, k = 0 and xj = xj/wj .
2. Let Ĉ = XT (y − µ̂S), CM = maxj{|ĉj|}, S = {j : |ĉj| = CM}, sj = sgn{ĉj} for j ∈ S,XS =

(. . . sjxj . . .)j∈S, µ̂S = XSβ̂S, d1 =
√

λ2, d2 = 1√
1+λ2

, and W = diag[w1, · · · , wp].
While (Sc 6= ∅) Do
(a) GS = XT

SXS , AS = (1T
SG−1

S 1S)−1/2

(b) Calculate equiangular vector
u1 = XSΩSd2

128



D. Hong and F. Zhang Weighted elastic net model

u2 = WSΩSd1d2

where ΩS = ASG
−1
S 1S

(c) Calculate the inner product vector
a = (XTu1 + WTu2d1)d2

(d) Update current algorithm estimate
µ̂S = µ̂S + γ̂u1

where γ̂ = min+
j∈Sc{CM−ĉj

AS−aj
,

CM+ĉj

AS+aj
}

(e) Update the support (active) set S
if γ̃ < γ̂, S = S − {j̃}
else S = S + {j̃}
where γ̃ = minγj>0{γj}, γj = −β̂j/d̂j, d̂j = sjΩSj

(f) k = k + 1
End Do

3. Output β̂j = β̂j/wj . Find step kopt to select the optimal model by using ten-fold cross validation.

4.2. Experimental Results
In the following, we apply the WEN model to analyze a set of mouse brain IMS data generated
from the Vanderbilt Mass Spectrometry Research Center. The analysis includes a comparison of
results by applying the EN method, WEN method, s well as the results obtained using the commer-
cial software SAM and other popular methods and software programs used in mass spectrometry
community.

The IMS data set is on GL26 glioma study. C57 black mice were implanted with a GL26
glioma cell line and tumor growth was allowed to occur for 15 days. The mice brains were excised,
flash-frozen, sectioned on a cryostat (12 µm) and thaw-mounted onto gold-coated MALDI targets.
Brain tissue was spotted with sinapinic acid for protein images on an acoustic reagent multispotter
(Labcyte). Protein images were acquired for each of the brain sections using a MALDI-TOF-
IMS (Bruker) at a resolution of 300µm by 300µm. After data acquisition, the data underwent a
series of basic preprocessing steps to reduce the experimental variance between spectra through
the removal of background, normalization of the peak intensity to the total ion current, and peak
binning/alignment algorithms if needed. Various algorithms were employed for all of the spectra
processing steps as a part of the PROTS Data program from BioDesex before applying Significance
Analysis of Microarrays (SAM) [3] to generate the SAM feature list in Table 1. In comparison,
WEN processes IMS data underwent only basic preprocessing steps with no peak binning before-
hand and saves significant amount of time for data processing.

The WEN model proposed here is for pixel-level classification. For the data entering, cancer
pixels and non-cancer pixels are selected from the mouse brain IMS data sets as symmetric as
possible with the consideration of structure similarity. A master peak list of m/z values for all
these pixels is generated. Although the number of m/z values is significantly larger than the
sample size, the WEN-model is able to use them with no need to reduce dimensions. The early
stopping feature of the LARS-type algorithm saves computation cost and time [32]. We include all
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Figure 2: Side peak (m/z = 10811). The peak at m/z = 10811 is a fake peak caused by noise.

peak m/z values before binning as predicator in (3.1), and y takes negative one for a noncancer
pixel and one otherwise.

Comparing the m/z list generated by the regular EN algorithm, the newly developed WEN
algorithm that incorporates the spatial penalty term produces an even more concise list by including
all significant features with a smaller number of side peaks. For instance, the side peak (m/z =
10811) shown in Figure 2 has been removed from the EN list by using the WEN algorithm. In
addition, around eighty percent of m/z values in the WEN list are also in the SAM list.

By examining the details of the intensity increase and decrease trends of selected m/z list,
we found that most m/z values in the WEN list have a decreasing trend in the tumor region. By
plotting the difference of mean spectrum of normal data and mean spectrum of tumor data, we can
see the whole data set is negatively associated overall. Since the WEN algorithm is based on a
linear regression model, if the data set is negatively associated overall, then it is likely to only pick
up m/z values with a decreasing trend in the tumor region.

Interestingly, when p À n, linear classifiers often performs better than non-linear ones in
many applications [11], even though non-linear methods are known to be more flexible. This
fact is related to the asymptotic results in [10]: when p À n, under mild assumptions for data
distribution, the pairwise distances between any two points are approximately identical to each
other so the data points form an n-simplex. Linear classifiers then become natural choices to
discriminate two simplices [28].
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In fact, protein identification provided identities of important biomarker peaks, including Cy-
tochrome c oxidase copper chaperone (m/z = 6700), NADH dehydrogenase (m/z = 7799) and
Cytochrome C oxidase subunit 6c (m/z = 8380), which are involved in the electron transport
chain. The electron transport chain removes electrons from the donor, NADH, and passes them
to a terminal electron acceptor, O2 via a series of redox reactions. Several recent studies have
linked impaired mitochondrial function as well as impaired respiration to the growth, division and
expansion of tumor cells; this is known as the Warburg effect [20]. The Warburg effect is described
as the dependency of tumors on glycolysis rather than oxidative phosphorylation for ATP even in
the presence of oxygen. This explains why the cytochrome c oxidase copper chaperone and the
cytochrome c oxidase subunit 6c have decreased signal intensities in the tumor areas of the brain.

The Table 1 shows the comparison results of the classification algorithms using principal com-
ponent analysis (PCA) with linear discriminant analysis (LDA) ([21], [24]), PCA with support
vector machine (SVM) [8], and WEN. These algorithms are applied to section 1 IMS data to learn
the optimal model and then are used to classify section 2 IMS data. The WEN algorithm shows
the best classification results and also has an internal feature selection facility.

Table 1.

Methods Accuracy Sensitivity Specificity
PCA+LDA 78.64% 100% 57.27%
PCA+SVM 71.82% 84.56% 59.09%
WEN 99.55% 100% 99.09%
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