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for all v.

The least such k is the choosability, choice number, or

list-chromatic number of G, denoted x;(G).

Goal: Consider an online version of choosability.
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Let the coloring algorithm for choosability of a graph G
be called Painter.

Ques. What if the algorithm (Painter) sees each list
only a bit at a time?

Suppose on round i, Painter must decide which vertices
receive color ( while seeing what happened on
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analysis is modeled by the following game:
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Lister/Painter Game (Schauz [2009])

Two players: Lister and Painter on a graph G with a
positive number of tokens at each vertex.

Round: Lister presents (marks) a set M of the
uncolored vxs, spending one token at each marked vtx.

Painter selects a subset of M forming an independent
set in G; these vertices are assigned a color distinct
from previously used colors.

Goal: Lister wins by presenting a vertex with no tokens.
Painter wins by coloring all vertices in the graph.

e Lister can use a list assignment L as a “schedule,”
allocating |L(Vv)| tokens to each vertex v.

If in round i, Lister presents {v:ieL(v)}, then Painter
wins against < G is L-colorable.

e An adaptive Lister, responding to Painter’s earlier
moves, may do better.
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Example Game

Let's play the Lister/Painter game on O3 > 4.
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Conclude: Lister wins on 0, 4 when each vertex has
2 tokens.
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X(G) < A(G) (Brooks [1941])
X:(G) £ A(G) (Vizing [1976])
Xp(G) < A(G) (Hladky-Kral-Schauz [2010])

When a suitable orientation exists,
G is k-choosable (Alon-Tarsi [1992])
G is k-paintable (Schauz [2010]) (non-algebraic)

When G is planar,
X(G) <5 (Heawood [1890])
X:(G) £ 5 (Thomassen [1994])
Xp(G) <5 (Schauz [2009])

When G is bipartite,
G is A(G)-edge-colorable (Konig [1916])
G is A(G)-edge-choosable (Galvin [1995])
G is A(G)-edge-paintable (Schauz [2009])
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The line graph of K is
k-colorable (Exercise)
k-choosable (Haggkvist-Janssen [1997])
k-paintable (Schauz [2010])

Appl. Round-robin ultimate frisbee tournament
» 5 teams (10 games total)

» Each team plays at most one game per day
» Equivalent to properly coloring edges of K5

Ques. Can we teams’ attendance requirements?

Scheduling the tournament is possible when
Duration Allowances (per team) Since [ (Ks5) is
5 days absences 5-colorable
7 days one -specified absence 5-choosable
7 days one unspecified absence  5-paintable
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Tools

Prop. (Degeneracy Tool) If f(v) > dg(Vv), then
G is f-paintable < G —vis f|y-v)-paintable.

Pf. Given a Painter strategy S on G — v, postpone v
when marked if S says to color a neighbor of v. This
happens at most ds(Vv) times.

Def. The join of G and H, denoted G ¢ H, is the disjoint
union G + H plus edges joining all of V(G) to all of V(H).

Thm. (CLMPTW) If G is k-paintable and |V(G)| < =k,
then G K, is (k + 1)-paintable.

Pf. Idea: Painter uses a k-paintability strategy S on G,
ignoring the added t-set T, until a special round where
MnNT is colored instead. Each v € T has a token left,
and G can be finished with the extra tokens in V(G).
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Conj. (Ohba [2002]) If |V(G)| £ 2x(G)+1,then G is
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e Recently by Reed, Noel, and Wu!

Conj. (Huang-Wong-Zhu [2011]) If [V(G)| < 2Xx(G),
then G is chromatic-paintable. (Sharpness: K372 . 2)

Thm. (Ohba [2002]) If |V(G)| £ x(G) + +/2x(G),
then G is chromatic-choosable.

Thm. x,(G) <k and |V(G)|< 7k = Xp(G®K:) < k+1.

Cor. K,  » is chromatic-paintable.
Sharpness: X,(K3,2) =2, but xp(K3,2,2) = 4 ([KKLZ]).

Cor. |V(G)| <x(G)+24/x(G)—1 = chrom-paintable.
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k
t1

tk

X k

Y

Cor. Ky r is k-paintable < r < kX,
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Thm. (CLMPTW) Consider K¢ » with |[X| =k and |Y|=r.

If f(y)=k for y € Y and f(x;) = t; for x; € X, then
Painter has a winning strategy < r < ]_[f=1 t;.

Pf. r=][]ti = Kk is not f-choosable.

Let L(x;) = U; with |U;| = t; and pairwise disjoint.

Let {L(y): yeY}=U; x - x Uk.

Any coloring of X blocks all colors of some y €Y.

r<]|ti = Painter wins. > ti=k = r=0 = win V.

> ti > k: may assume |[Mn X| =1 (by degeneracy tool).
Let MNX={xx}andg=|MnY]|.

Case 1: g < ]_[:.:11 t;. Painter colors x.
Y —M is degenerate; apply ind. hyp. to (X—xx) U (MnY).

Case 2: g > 1—[:;—11 t;. Painter colors MnY.
IV =M <[]ti—q <1<, ttc — 1); ind. hyp. applies! m
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Open Question
Ques. Can x,(G) — x1(G) > 17

Graphs to consider:

Possibility 1: Complete bipartite graphs
Xt(Ke) < lgk — (5 +0(1)) lglgk (Alon)
Xp(Kk,k) < 1gk (KKLZ [2012])

Possibility 2: Complete multipartite graphs

Xe(K3.) = [#5] (Kierstead [2000])

Xp(K3+k) < 3k (KMZ [2013+])

Ques. What is min{r: K, is not k-paintable}?

to compute forj > 0!

Thank You!
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