Physics 2120 Test 3

Spring 2010

Name:		

- Show all work to receive full credit. Answers must have appropriate units.
- ➤ Keep numbers out of your equations until as late as possible. Box-in Final answers.
- Ask if you do not understand the statement of a given problem.

- 1. An object is placed 10 cm from a converging lens of focal length 6 cm.
- (a) On the diagram below use a ray drawing to locate the position of the image.[4 points]

(b) Use the lens equation to find the position of the image analytically. [5 points]

(c) Is the image real or virtual? Is the image upright or inverted? What is the magnification of the image? [4 points]

Image is real, inverted and
$$m = -\frac{4}{3} = -\frac{15}{10}$$

= -1.5.

(d) A diverging lens of focal length -10 cm is placed 10 cm to the right of the converging lens. Use the lens equation to find the position of the resulting image for the two lens system. [4 points]

system. [4 points]

$$4 = 4 = 5$$

$$4 = 5 = 5$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$4 = 6 = 6$$

$$5 = 6 = 6$$

$$6 = 6 = 6$$

$$6 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 = 6$$

$$7 = 6 =$$

(e) What is the total magnification for the two lens system? [2 points]

$$M_{\tau} = M_{1} \times M_{2} = -1.5 \times \left(\frac{10}{-5}\right) = -3$$

(f) Can the image through the two lens system be displayed on a screen? [1 point]

2. The figure below shows the diffracted spots of laser light of wavelength 630 nm incident on a pair of slits of equal width, a, and separation d. The scale under the pattern shows a ruler with centimeters spacing. The center bright spot is at 4 cm on the scale. The screen on which the pattern is projected is 1.4 m from the slots.

(a) By considering the position of the first diffracted maximum, determine the slit spacing d. [7 points]

$$\frac{1}{3} = \frac{1.4 \times 630 \text{ m}}{1 \times 10^{3}} = 88.2 \mu\text{m}$$

(b) Explain why the third diffracted order is missing and use the position of the suppressed order to determine the width of the slit opening.[7 points]

The 3 diffracted order is missing because the single slit opening gives a minimum at the position of the 3rd max mum.

$$\lambda = a \sin \theta = a a \frac{\lambda}{4} \Rightarrow a = \frac{\lambda y}{3} = \frac{630 \text{mm} \times 1.4}{3 \times 10^{-2}} = 29.4 \text{ mm}$$

(c) If the entire experiment were submerged under water of refractive index n=1.33, what would you expect to happen to the spacing of the pattern on the screen? [Hint: consider path length difference and the effect of refractive index on the light][6 points]

Under water the wavelength would be smaller $\lambda \Rightarrow \frac{1}{2}$. Thus, to get the same path difference required for a maximum or a minimum would be smaller and the pathern would contract ie sparing on screen would be finer.

3. A resistor-inductor circuit as shown in the figure below is set up.

(a) At time t=0 the switch is thrown to position A. What current flows through the circuit at times 0, 20μs, and 40 μs? [4 points]

It times 0,
$$20\mu s$$
, and $40 \mu s$? [4 points]
$$I = I_{\text{MA}} \left(1 - e^{-\frac{\pi}{2}}\right)$$

$$t = 20\mu s$$
 $t = \frac{20}{150}(1 - e^{-\frac{20\mu s}{E}}) = [52.5mA]$ $t = 40\mu s$ $[84.3mA]$

(b) At $t = 40 \mu s$ what is the rate at which energy is being drawn from the battery? [4] points

(c) At $t = 40 \mu s$ what is the rate at which energy is being dissipated in the resistor? [4] points

Power =
$$I^2R = (84.3 \text{ mA})^2 150$$

= 1.07 Walts

(d) At $t = 80 \mu s$ the switch is thrown quickly to position B. What is the voltage across the inductor when the switch is thrown? [4 points]

Tat 80µs = 0.115A. hoop trule
$$20-0.115R-\Delta V_L = 0$$

 $\Delta V_L = 2.71 \text{ Volts}$

(e) What is the current in the circuit at $t = 120 \mu s$ (i.e. 40 rhs after the switch is thrown

from A to B). [4 points]
$$I = I_0 e^{\frac{40 \, \text{MS}}{40 \, \text{MS}}} = 0.042 \, \text{Amps}$$

$$= 42 \, \text{mA}.$$

- 4. A Helium-Neon laser emits light at power 12.0 mW and wave-length 633 nm. The laser beam is focused until its diameter matches the 1 µm diameter of a perfectly absorbing polystyrene sphere placed in its path.
- (a) What is the beam intensity at the sphere's location? [4 points]

(b) What is the radiation pressure on the sphere? [4 points]

(c) What is the magnitude of the radiation force on the sphere? [4 points]

(d) What is the magnitude of the acceleration that the radiation force alone would give to the sphere? [4 points] The mass of the sphere is 6.3 × 10-14 kg

- 5. You stare into the back of a soup spoon of radius of curvature 7 cm. "Gosh, I'm gorgeous," you think, "I wonder where my gorgeous image appears to be?" your force w
- (a) What is the focal length of the convex spoon? [3 points]

The focal length of the convex spoon? [3 points]
$$12 \text{ cm}$$
 from the spoon $f = -3.5 \text{ cm}$ (half radius of curvature)

(b) Where is the image located? [4 points]

(c) Is the image upright? [3 points]

$$m = -\frac{di}{do} = -\frac{7.5}{12} = +0.54$$

ie upright 4 munified (d) Is the image real or virtual? [1 point]

Image is virtual.

6. A coin is located at the bottom of a swimming pool that is 1.4 m deep. The coin is 1.2 m from the edge of the pool. You are standing on the flat surface surrounding the (completely full) pool at a distance of 1 m from the edge (see figure). Estimate how tall you must be in order to see the coin at the bottom of the pool. [10 points]

$$\frac{1 \text{ m}}{1.4 \text{ m}}$$

$$\frac{1}{2} \text{ m}$$

$$\frac$$